본 논문은 침입탐지 도구에서의 능동 대응 정책 생성 방안에 대하여 연구하였다. 능동 대응형 침입탐지 시스템을 설계 구현하기 위한 선행 연구로서 능동 대응을 위한 침입탐지 도구의 요구사항을 7가지 구성요소로 고려하였고, 공격에 대한 능동 대응 방안으로 NIDS와 ADS를 통합한 모델을 기반으로 상호 유기적으로 시그니쳐를 생성할 수 있는 방안을 제시하였다. Unknown Attack의 탐지를 위하여 트래픽 비정상행위 탐지와 프로토콜 비정상행위 탐지로 나누어 연구하였고 자동적인 시그니쳐 생성 엔진을 위해 헤더영역과 페이로드영역으로 나누어 연구하였다.
IEEE 802.16e 표준을 기반으로 하는 와이브로(WiBro) 서비스는 순수 국내 기술로 개발된 초고속 무선 휴대인터넷 기술이다. 본 논문에서는 와이브로 초기인증 단계에서 생길 수 있는 보안취약점을 분석하고 그러한 보안위협을 대상으로 한 공격을 탐지할 수 있는 명세기반의 침입탐지시스템을 제안한다. 제안된 침입탐지시스템은 PKMv2 EAP-AKA 기반의 정상적인 초기 인증 동작방식을 명세화하여 상태전이머신으로 모델링한 후 명세에 기반한 침입탐지를 실시한다. 본 논문에서는 초기인증 과정에서 발생 가능한 다섯 가지의 공격들을 시나리오로 모델링하고, 시나리오 기반의 실험을 실시하여 제안된 침입탐지시스템의 탐지성능을 검증한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권12호
/
pp.5819-5840
/
2018
Considering the topology of hierarchical tree structure, each cluster in WSNs is faced with various attacks launched by malicious nodes, which include network eavesdropping, channel interference and data tampering. The existing intrusion detection algorithm does not take into consideration the resource constraints of cluster heads and sensor nodes. Due to application requirements, sensor nodes in WSNs are deployed with approximately uncorrelated security weights. In our study, a novel and versatile intrusion detection system (IDS) for the optimal defense strategy is primarily introduced. Given the flexibility that wireless communication provides, it is unreasonable to expect malicious nodes will demonstrate a fixed behavior over time. Instead, malicious nodes can dynamically update the attack strategy in response to the IDS in each game stage. Thus, a multi-stage intrusion detection game (MIDG) based on Bayesian rules is proposed. In order to formulate the solution of MIDG, an in-depth analysis on the Bayesian equilibrium is performed iteratively. Depending on the MIDG theoretical analysis, the optimal behaviors of rational attackers and defenders are derived and calculated accurately. The numerical experimental results validate the effectiveness and robustness of the proposed scheme.
Distributed fiber-optic acoustic·vibration sensing technology is becoming increasingly popular in many industrial and academic areas such as in securing large edifices, exploring underground seismic activity, monitoring oil well/reservoir, etc. Long-range perimeter intrusion detection exemplifies an application that not only detects intrusion, but also pinpoints where it happens and recognizes kinds of threats made along the perimeter where a single fiber cable was installed. In this study, we developed a distributed fiber-optic sensing device that measures a distributed acoustic·vibration signature (pattern) for intrusion detection. In addition, we demontrate the proposed deep learning algorithm and how it classifies various intrusion events. We evaluated the sensing device and deep learning algorithm in a practical testbed setup. The evaluation results confirm that the developed system is a promising intrusion detection system for long-distance and seamless recognition requirements.
국방통합보안관제체계 내에는 자체 개발된 시스템을 포함하여 다양한 오용탐지 기반의 상용 침입탐지시스템들이 운용되고 있다. 오용탐지 방식에 기반해서 운용되는 침입탐지시스템의 경우 침입탐지 패턴의 업데이트 주기나 질적수준에 따라 서로 상이한 능력을 가지며, 이러한 상이성은 침입탐지시스템들 간의 통합과 협동탐지를 더욱 어렵게 만든다. 이에 본 논문에서는 국방통합보안관제체계 내에서 운용되는 이기종 침입탐지시스템들 간의 통합과 협업탐지를 위한 기반을 마련하기 위해 이기종 침입탐지시스템들이 새롭게 생성한 탐지규칙을 서로 전파하고 적용할 수 있는 기법을 제안하고, 구현 및 실험을 통해 제안된 탐지규칙 교환 기법의 국방환경 가능성을 입증한다.
International Journal of Computer Science & Network Security
/
제22권12호
/
pp.1-12
/
2022
Besides unexpected growth perceived by IoT's, the variety and volume of threats have increased tremendously, making it a necessity to introduce intrusion detections systems for prevention and detection of such threats. But Intrusion Detection and Prevention System (IDPS) inside the IoT network yet introduces some unique challenges due to their unique characteristics, such as privacy inference, performance, and detection rate and their frequency in the dynamic networks. Our research is focused on the privacy inferences of existing intrusion prevention and detection system approaches. We also tackle the problem of providing unified a solution to implement the open-source IDPS in the IoT architecture for assessing the performance of IDS by calculating; usage consumption and detection rate. The proposed scheme is considered to help implement the human health monitoring system in IoT networks
현재 사이버 공격이 더욱 지능화됨에 따라 기존의 침입 탐지 시스템(Intrusion Detection System)은 저장된 패턴에서 벗어난 지능형 공격을 탐지하기 어렵다. 이를 해결하려는 방법으로, 데이터 학습을 통해 지능형 공격의 패턴을 분석하는 딥러닝(Deep Learning) 기반의 침입 탐지 시스템 모델이 등장했다. 침입 탐지 시스템은 설치 위치에 따라 호스트 기반과 네트워크 기반으로 구분된다. 호스트 기반 침입 탐지 시스템은 네트워크 기반 침입 탐지 시스템과 달리 시스템 내부와 외부를 전체적으로 관찰해야 하는 단점이 있다. 하지만 네트워크 기반 침입 탐지 시스템에서 탐지할 수 없는 침입을 탐지할 수 있는 장점이 있다. 따라서, 본 연구에서는 호스트 기반의 침입 탐지 시스템에 관한 연구를 수행했다. 호스트 기반의 침입 탐지 시스템 모델의 성능을 평가하고 개선하기 위해서 2018년에 공개된 호스트 기반 LID-DS(Leipzig Intrusion Detection-Data Set)를 사용했다. 해당 데이터 세트를 통한 모델의 성능 평가에 있어서 각 데이터에 대한 유사성을 확인하여 정상 데이터인지 비정상 데이터인지 식별하기 위해 1차원 벡터 데이터를 3차원 이미지 데이터로 변환하여 재구성했다. 또한, 딥러닝 모델은 새로운 사이버 공격 방법이 발견될 때마다 학습을 다시 해야 한다는 단점이 있다. 즉, 데이터의 양이 많을수록 학습하는 시간이 오래 걸리기 때문에 효율적이지 못하다. 이를 해결하기 위해 본 논문에서는 적은 양의 데이터를 학습하여 우수한 성능을 보이는 Few-Shot Learning 기법을 사용하기 위해 Siamese-CNN(Siamese Convolutional Neural Network)을 제안한다. Siamese-CNN은 이미지로 변환한 각 사이버 공격의 샘플에 대한 유사성 점수에 의해 같은 유형의 공격인지 아닌지 판단한다. 정확성은 Few-Shot Learning 기법을 사용하여 정확성을 계산했으며, Siamese-CNN의 성능을 확인하기 위해 Vanilla-CNN(Vanilla Convolutional Neural Network)과 Siamese-CNN의 성능을 비교했다. Accuracy, Precision, Recall 및 F1-Score 지표를 측정한 결과, Vanilla-CNN 모델보다 본 연구에서 제안한 Siamese-CNN 모델의 Recall이 약 6% 증가한 것을 확인했다.
This paper presents a deep learning-based weight sensor, using optical speckle patterns of multimode fiber, designed for real-time intrusion detection. The weight sensor has been trained to identify 11 distinct speckle patterns, ranging in weight from 0.0 kg to 2.0 kg, with an interval of 200 g between each pattern. The estimation for untrained weights is based on the generalization capability of deep learning. This results in an average weight error of 243.8 g. Although this margin of error precludes accurate weight measurement, the system's ability to detect abrupt weight changes makes it a suitable choice for intrusion detection applications. The weight sensor is integrated with the Google Teachable Machine, and real-time intrusion notifications are facilitated by the ThingSpeakTM cloud platform, an open-source Internet of Things (IoT) application developed by MathWorks.
Our paper describes an Intrusion Detection Parallel System(IDPS) which detects an anomaly activity corresponding to the actions that interaction between near detection events. IDES uses parallel inductive approaches regarding the problem of real-time anomaly behavior detection on rule-based system. This approach uses sequential rule that describes user's behavior and characteristics dependent on time. and that audits user's activities by using rule base as data base to store user's behavior pattern. When user's activity deviates significantly from expected behavior described in rule base. anomaly behaviors are recorded. Observed behavior is flagged as a potential intrusion if it deviates significantly from the expected behavior or if it triggers a rule in the parallel inductive system.
이 논문에서는 침입 탐지 시스템의 탐지 효율을 높이기 위해 데이터 마이닝의 클러스터링 기법을 이용하여 경보 데이터를 그룹화하고 그 결과를 이용하여 경보 데이터의 상관 관계를 분석하는 방법을 제안하였다. 즉 클러스터링 기법을 이용하여 경보데이터를 사용자가 원하는 개수의 그룹으로 분류하고, 생성된 경보 데이터 클러스터 모델을 이용하여 새로운 경보 데이터을 분류할 수 있도록 하였다. 또한, 결과 클러스터의 생성 원인이 되는 이전의 경보의 분포 데이터를 저장 관리하여 클러스터 간의 시퀀스를 생성하였고, 생성된 각각의 클러스터 시퀀스를 통합하여 클러스터들의 시퀀스를 추출하여 발생한 경보 이후의 향후 발생 가능한 경보 타입을 예측하기 위한방법을 제공하였다. 이는 과거에 탐지된 공격의 형태 뿐만 아니라 새로운 혹은 변형된 경보의 분류나 분석에도 이용 가능하다. 또한 생성된 클러스터간의 생성 원인의 분석에 의한 클러스터 간의 순차적인 관계의 추출을 통해 사용자가 공격의 순차적 구조나 탐지된 각 공격 이면에 감추어진 전략을 이해하는데 도움을 주며 현재의 경보 이후에 발생 가능한 경보들을 얘측할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.