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Abstract 
 

Considering the topology of hierarchical tree structure, each cluster in WSNs is faced with 
various attacks launched by malicious nodes, which include network eavesdropping, channel 
interference and data tampering. The existing intrusion detection algorithm does not take into 
consideration the resource constraints of cluster heads and sensor nodes. Due to application 
requirements, sensor nodes in WSNs are deployed with approximately uncorrelated security 
weights. In our study, a novel and versatile intrusion detection system (IDS) for the optimal 
defense strategy is primarily introduced. Given the flexibility that wireless communication 
provides, it is unreasonable to expect malicious nodes will demonstrate a fixed behavior over 
time. Instead, malicious nodes can dynamically update the attack strategy in response to the 
IDS in each game stage. Thus, a multi-stage intrusion detection game (MIDG) based on 
Bayesian rules is proposed. In order to formulate the solution of MIDG, an in-depth analysis 
on the Bayesian equilibrium is performed iteratively. Depending on the MIDG theoretical 
analysis, the optimal behaviors of rational attackers and defenders are derived and calculated 
accurately. The numerical experimental results validate the effectiveness and robustness of the 
proposed scheme. 
 
 
Keywords: wireless sensor networks (WSNs); multi-stage intrusion detection game 
(MIDG); intrusion detection system (IDS); posterior probability; Bayesian equilibrium 

 
 
http://doi.org/10.3837/tiis.2018.12.012                                                                                                               ISSN : 1976-7277 



5820                                                                     Zhou et al.: Bayesian Rules Based Optimal Defense Strategies for Clustered WSNs 

1. Introduction 

With the characteristics of high redundancy, low power consumption, self-organization and 
fast deployment, wireless sensor networks (WSNs) have broad application prospects in 
various fields such as battlefield environment reconnaissance, target tracking, and situational 
awareness, etc [1]. However, today’s advanced mobile computing and wireless 
communication technology, combined with the complexity of open and 
bandwidth-constrained channels, increases significantly the security risk by making the data 
monitoring and intrusion detection more and more challenging than before. Consequently, 
WSNs are becoming much more vulnerable to various threats, which include MAC flooding, 
nodes replication, and replay attack, etc [2]. 

As a distributed and heterogeneous computing network, WSNs have been extensively 
explored in many countries. The perimeter security is an important guarantee to ensure the 
internal data security and the topology integrity, which provides the theoretical basis for the 
applications of WSNs in high security fields [3]. Generally, the perimeter security 
mechanisms in WSNs can be divided into two main families: Prior defense mechanism (PDM) 
and ex-post detection mechanism (EDM) [4]. PDM refers to relative cryptographic algorithms, 
verification codes and signature algorithms to ensure the confidentiality, completeness, 
availability, controllability and non-repudiation in the data processing [5]. To the contrary, 
EDM detects and restrains the invasion through intrusion detection technology. As a whole, 
prior defense is the first line of defense for the network security. When the malicious nodes 
decipher the internal key and cryptographic algorithm through node replication or capture, 
PDM in WSNs will be invalid immediately [6]. Even worse, malicious nodes can intercept the 
crucial information transmitted to other sensor nodes. Sustained attack can exhaust the 
network resource promptly and therefore severely threats the network security. Thus, the 
intrusion detection mechanism (IDM) should be widely deployed as a complementary line of 
defense to the high-reliability security approaches aiming at eliminating the underlying threats 
[7]. Since the perimeter security of WSNs is equal to “the detection and suppression of illegal 
behaviors”, many researchers pay much attention to the abnormal detection and misuse 
detection in recent years, which belong to the classical IDM [8]. By means of the detecting and 
filtering function in IDM, the system can check and quarantine the illegal behaviors to 
guarantee the perimeter security in WSNs [9].  

The existing intrusion detection methods are principally based on the assumptions that 
sensor nodes’ resource is relatively sufficient and security weights possessed by sensor nodes 
are identical [10]. However, sensor nodes usually have different security levels or possess 
different security weights depending on the information they possess. Thus, the proposed IDS 
schemes cannot be adopted directly in WSNs [11]. It is seriously urgent to design an intrusion 
detection scheme to take into consideration both the security weights and the resource 
constraints [12]. As a mathematical method to formulate the solution of the participants under 
the assumptions, game theory provides a possible way to analyze the optimal defense strategy 
for the IDS. The intrusion detection game is divided into different stages in WSNs. Depending 
on the behaviors of external node and parameter settings in previous stage, IDS can infer and 
modify the probability that external node outside the cluster is a malicious node in the next 
stage [13].  

In the multi-stage intrusion detection game, IDS in WSNs shows that cluster head and 
sensor nodes cooperate with each other in the cluster [14, 15]. The malicious node and IDS 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 12, December 2018                             5821 

constitute the roles of the signal sender and receiver in WSNs. Thus, the game between IDS 
and external node can be regarded as signal game in each stage. 

Some sensor nodes are more “attractive” to attackers than others. Such targets belong to the 
nodes containing more sensible information and lower security intensity. When attack cost is 
greater than the revenue, the malicious node will not choose to attack the sensor node. 
Similarly, IDS tends to perform a defense strategy if and only if the defense revenue is greater 
than the payment. Therefore, how to calculate the security-weight threshold of sensor nodes is 
the key to solve the game model of IDM. 

The rest of this paper is organized as follows: In Section 2, a review of the IDS in WSNs is 
presented. Besides, the advantages and disadvantages of existing IDM are compared in 
different aspects. In section 3, the multi-stage intrusion detection game is formulated and then 
the security-weight threshold is calculated. In Section 4, the Nash equilibrium is derived under 
different conditions. In Section 5, the optimal strategy for multi-stage intrusion detection is 
designed based on the network parameters in WSNs. Experiment and comparison are given in 
Section 6 and conclusions are reached in Section 7. 

2. Related Work 
IDS has been an active research field in recent years. Most research efforts address the 
problem of how to accurately detect the illegal behaviors: e.g., increase relational database, 
shorten detection period, decrease false alarm rate, etc [16]. As a proactive defense technology, 
IDS in WSNs makes it possible to prevent internal and external attacks simultaneously. 

Recently, several theoretical approaches to the intrusion detection in WSNs have been 
proposed to improve the performance of IDS. Kolias et al. proposed a distributed IDS based on 
the abnormal behavior detection and key parameter selection of cluster heads, in which 
single-point independent detection mechanism is realized to improve the detection rate, but the 
system overhead is increased [16]. Later Yu et al. developed the previous work on traffic 
prediction to detect malicious nodes using a behavior-tree-based algorithm [17]. In [18], the 
ARMA model is constructed to predict the data flow in each region of the network, and the 
traffic threshold is configured to detect the illegal behaviors. Based upon detecting the traffic 
threshold, Patel et al. introduced a cooperative IDS in which attacks can be decided by the 
neighbor node when the local detection engine cannot be determined. Kalnoor et al. 
constructed an IDS model based on proxy cooperation. Monitoring agents, decision agents and 
agent equivalents achieve the isolation of malicious nodes [19]. However, the model does not 
take into consideration the resource characteristics of WSNs in hierarchical tree structure. 
Considering the weakness of proxy-cooperation-based IDS model, Manandhar et al. proposed a 
hierarchical hybrid detection architecture, which takes advantage of different functional nodes 
and the degree of threat to the implementation of Kalman filter [20]. Forootaninia et al. 
introduced a cooperative watchdog detection method, which deploys neighbor node of the 
sender and the receiver as a watchdog to monitor the relationship between the measurement 
parameters and the threshold. In their model, a rotation mechanism is designed to improve 
response speed of the detection, but the algorithm is based on the predictable security threat 
type. Hence, this algorithm cannot apply to the unpredictable network environment [21]. 
Wang et al. proposed a competitive clustering algorithm to train and modify supervisory rules, 
which is aimed to make the WSNs tolerant to labels lost and improve the system's self-learning 
function. Nevertheless, the limited supervisory rules relatively weaken the system’s 
robustness for attack defense [22]. 
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Currently, many researchers pay attention to the game theoretical model of IDS in WSNs. 
The external node and IDS are regarded as participants in the game. In [23], the main emphasis 
is placed on the noncooperative nonzero-sum game with chi-square detection method. A 
Bayesian hybrid solution is computed based on the maximum likelihood equation for the 
defender to strike a balance between security costs and monitoring gains. To a certain extent, 
the scheme is not suitable for node replication attack because of the exceptional pattern in this 
situation. Jokar et al. modeled the interaction between sensor node and external node as a 
continuous differential game (CDG) where the external node is either “normal” or “malicious” 
[24]. In reality, time is continuous, that is to say, the IDS has to update its strategy over time, 
rather than chooses its behaviors at discrete time, which is not suitable to the WSNs 
environment. In order to reduce the computational cost of the algorithm, Moosavi et al. [25] 
put forward an anomalous behavior detection mechanism (ABDM) based on the 
Markov-chain game and set the predefined thresholds for comparison. However, the threshold 
is difficult to calculate accurately, which indicates that it needs to be further improved. 

Despite the substantial work on the IDS in WSNs, none of them addresses the problem in 
resource-constrained environment and multi-stage game [26]. The realization of each scheme 
in WSNs needs to adapt to the characteristics of limited resources, which include node power, 
communication bandwidth, computing speed and storage capacity. Otherwise, the nodes 
embedded security strategy will be quickly exhausted, which seriously threaten the network 
topology and system security. The IDM should efficiently run in the nodes with limited 
resource to ensure the security of the communication, which demands the optimal resource 
utilization. Motivated by this observation, our work contributes to the existing research results 
by providing a multi-stage game theoretical framework of the IDS problem in 
resource-constrained environment consisting of sensor nodes with different security weights. 
By calculating the solution of Bayesian equilibrium, we further derive the optimal defense 
strategy for clustered WSNs in each stage.  

3. Dynamic Intrusion Detection Game Model 
Consistently with the existing researches, it is assumed that N sensor nodes in WSNs have 
been clustered and each cluster holds only one cluster head. According to the classical defense 
model, the IDS consists of cluster head and sensor nodes in each cluster [23, 24]. Cluster head 
and sensor nodes cooperate with each other to implement the detection and defense 
mechanism. It is started with the situation where there are the attacker and defender. The 
interaction between them is modeled as a noncooperative nonzero-sum game. Assuming that 
the external nodes and IDS are rational, it is defined that the strategy is completely governed 
by the utility functions. The IDS and external nodes have limited resources. Sensor nodes in 
the cluster possess different security weights respectively, ie. 1 2 NW W W≥ ≥ ≥… . 

The notations in the multi-stage intrusion detection game (MIDG) are shown in Table 1. 
 

Table 1. Definition of the notations 
Notation Definition 

ip  The probability that the external nodes attacks sensor node i 

AP  The set of strategies for external node 
P  Resource constraints for external node 

Su  The utility function of external node 

iW  Security weight of the sensor node i in the cluster 
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*
ip  Equilibrium solution to attack sensor node i 

a  Detection rate 
Sθ  The type of external nodes 

a iC W  Resource consumption to attack sensor node i 

f iC W  Resource consumption generated by false alarm 
β  Wireless channel reliability 

iq  The probability that cluster head allocate resources to sensor node i 

DQ  The set of strategies for IDS 
Q  Resource constraints of IDS  

Ru  Utility function of IDS 
Γ  The set of sensor nodes which may be attacked 

*
iq  Equilibrium solution to detect sensor node i 

b  False alarm rate 
Rθ  The type of IDS 

d iC W  Resource consumption in that node i defense attack  
Θ  The type space of participants 

( ) ( 1)t
SP θ =  The posterior probability that IDS considers the external node as 

malicious node in the tth stage  
( )Sa t  The action of S in the tth stage 

ˆ ( )Sa t  The action of S in the tth stage which is detected by R 
( ) ˆ( 1 | ( ))t

S SP a tθ =  The priori inference probability that S is a malicious node in the (t+1)th 
stage 

ˆ( ( 1) | 1)S SP a t θ+ =  The probability that R detects the action ˆ ( 1)Sa t +  when S is a malicious 
node in the (t+1)th stage 

3.1 Game Model 
Assume that cluster heads and sink node linked to base station are the trusted nodes in WSNs. 
The types of external node outside the communication range of cluster head may be “legal” or 
“malicious”. Malicious node can attack all the sensor nodes in the cluster. Cluster head takes 
advantage of the defense strategy to allocate network resource to each sensor node with certain 
probability. Then, sensor node combines the security mechanism with network resource to 
defense malicious behaviors. Thus, the IDS consists of cluster head, sensor nodes and 
corresponding sets of the security strategy.  

Fig. 1 depicts the network model, which includes cluster head, sensor nodes, external node 
and base station. The external node is the data sender and intruder. The IDS is the data receiver 
and detector. The relationship between the participants is consistent with the characteristics of 
signal game. Since the type of external node is uncertain to the defender, it is necessary for the 
IDS to update the estimated possibility that external node is malicious in the dynamic game. 
Therefore, the continuous time is divided into independent stages. A signal game between 
external node and IDS is executed in each stage. The overall interaction between the attacker 
and defender is illustrated with a multi-stage intrusion detection game (MIDG). When 
multiple external nodes attack the same cluster simultaneously, these nodes are regarded as 
one malicious node in this paper. Considering the attack revenue in the network is not 
superimposed, one or more malicious nodes have the same utility to the sensor node. 
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Fig. 1. Network model 

 
It is started with the assumption that the set of sensor nodes in the cluster is . 

The network is modeled as a seven-tuple , where  is the set of  two 
participants in MIDG which we refer to as external node/sender S and intrusion detection 
system/receiver R throughout the paper,  is the set of type space in which and 

 denote the type space of external nodes and intrusion detection system respectively, 
 is the set of actions. 

 is the set of actions S can 
take, similarly, is the set of actions R can take. If the sender S is a legal 
node, it cooperates with the receiver R. Otherwise, the sender S can choose to attack or 
cooperate with receiver R as a malicious node. Furthermore, the receiver R executes the 
strategy to defend or idle, which is aimed to get the optimal payoff.  is the 
type space of external nodes S which represents legal node if and malicious node if 

respectively. denotes the IDS is a receiver.  ↦ represents the 
prior probability that the external nodes S is a malicious node. In Bayesian statistical inference, 
a prior probability of an uncertain quantity p (for example, suppose p is the proportion of 
voters who will vote for the politician named Tim in a future election) is the probability 
distribution that would express one’s uncertainty about p before the “data” (for example, an 
opinion poll) is taken into account. ，where p represents the initial probability 
that receiver R believe sender S is a malicious node in the first stage. The purpose of S is to 
achieve the maximum damage to the sensor nodes without being detected by IDS. To this end, 
external nodes choose the strategy , which is the attack probability to each 
sensor node within the cluster. Similarly, is the strategy of the defender to 
each sensor node. That is to say, the defender monitors the sensor node i with the probability . 

 represents resource constraint of the external nodes. We have that represents 

there is one external node outside the cluster and that represents there are multiple 
external nodes.  reveals that IDS has only one cluster head in the cluster. 

，where uS is the utility function of the sender S , uR is the utility function of the 
receiver R. 

In practice, security weights of sensor nodes are evaluated depending on appropriate 
standard. The set of security weights for sensor nodes is denoted by , 
which represents the importance of the secret information possessed by sensor nodes or the 
position of the nodes in the topology. If the attack on sensor node i is successful, the attacker 
will get payoff  .  
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Table 2 illustrates the payoff matrix of the sender’s/receiver’s interaction on sensor node i 
in different situations. In Table 2, a denotes the detection rate of the receiver R. b denotes the 
false alarm rate under the influence of electromagnetic environment, and 0 , 1a b≤ ≤ . The 
resource consumption of the attack and defense is taken into account. Consequently, it is 
assumed that the loss to attack and defend sensor node i is denoted as a iC W  and d iC W  
respectively. Then, we have the constraint 1aC < . Otherwise, the rational S will never choose 
to attack R. Similarly, 1dC < . β  represents the wireless channel reliability which can 
influence the judgment of the action taken by S. f iC W  denotes the loss of receiver R, which is 
generated by false alarm. If S is a legal node, zero is the payoff of S in MIDG (in other words, 
S has to choose the action “Cooperate” and this action has no negative effects on the network). 
Assume that S is a legal node and it chooses the action “Cooperate”, then the payoff of R can 
be denoted by f i d ibC W C W− −  if R takes the action “Defend”. Thus, {0, f i d ibC W C W− − } is the 
payoff set in this situation. Similarly, if S and R take different actions, the payoff matrixes are 
constructed in Table 2(a) and Table 2(b). 
 

Table 2. Payoff matrix of intrusion detection game 
(a) The sender S is a legal node 

 Defend Idle 
Cooperate {0, f i d ibC W C W− − } {0,0} 

(b) The sender S is a malicious node 
 Defend Idle 

Attack 
{ (1 ) (1 2 )i i a iW a W C Wβ β− + − − , 

(1 ) (1 2 )i i d iW a W C Wβ β− − − − − } 
{ i a iW C W− , 

iW− } 

Cooperate {0, f i d ibC W C W− − } {0,0} 
 
According to the Bayesian rule [25], the posterior probability that S is of a malicious node in 

the (t+1)th stage can be updated from the parameters of the game in the tth stage, which can be 
expressed as: 

( )
( 1)

( )

ˆ ˆ( ( 1) | 1) ( 1| ( ))ˆ( 1| ( 1)) ,
ˆ ˆ( ( 1) | ) ( | ( ))

S S

t
t S S S S

S S t
S S S S

P a t P a tP a t
P a t P a t

θ

θ θ
θ

θ θ
+

∈Θ

+ = ⋅ =
= + =

+ ⋅∑
                  (1) 

where the difference between ˆ ( )Sa t  and ( )Sa t  is determined by the detection rate a and false 
positive rate b. If the action ( )Sa t  is “Cooperate”, then the probability that ˆ ( )Sa t  is “Attack” 
can be calculated by percentage b. 

Traditionally, the malicious node chooses the action depending on a mixed strategy. It is 
assumed that malicious node performs the strategy ( ,1 )Sδ ρ ρ= − , where ρ denotes the 
probability to attack the receiver R, and similarly, 1 ρ−  denotes the probability to cooperate 
with the receiver R. Thus, we have i

i
pρ

∈Γ
= ∑ . 

The probability formulas in equation (1) can be expressed as: 
ˆ( ( 1) | 1) (1 )S SP a t Attack a bθ ρβ ρ β+ = = = + − ⋅ ,                            (2) 

ˆ( ( 1) | 0)S SP a t Attack bθ β+ = = =  ,                                     (3) 
ˆ( ( 1) | 1) 1 (1 ) (1 ) (1 )S SP a t Cooperate a bθ β ρβ ρ β+ = = = − + − ⋅ + − ⋅ − ,             (4) 

ˆ( ( 1) | 0) 1S SP a t Cooperate bθ β+ = = = − .                                (5) 
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With the upcoming iterations of parameter ( )tP , the dynamic game model G exists a perfect 
Bayesian equilibrium if and only if it satisfies the Bayesian conditions. Thus, it should be 
proved that the Bayesian conditions is satisfied in MIDG.  

The definition of the Bayesian conditions is as follows [25]. 
Definition 2: Bayesian conditions include: 
1. The posterior probability is strictly calculated by the prior probability and Bayesian rules; 
2. The posteriori probabilities of the participants are linearly independent with each other 

and all types of the participants have the unified prior probability; 
3. The participants do not transmit any information that they don’t know; 
4. The joint probability distribution of the posterior probability is consistent with type 

spaceΘ . 
Theorem 1 If the MIDG is defined as seven-tuple G in Definition 1, then the Bayesian 

condition is satisfied in MIDG. 
Proof. Obviously, the posterior probability is obtained by the combination of the prior 

probability and Bayesian rule according to formula (1). Thus, the MIDG satisfies conditions 1 
in Definition 2. Since the receiver R only has the ability to defense malicious nodes, Bayesian 
condition 2 is clearly satisfied. The information transmitted by the sender S is determined by 
the action performed. When the sender S executes the same action, the posterior probabilities 
that the sender S is malicious node must be equal. Therefore, Bayesian condition 3 is satisfied. 
Considering there are only two participants in each stage of MIDG, the other nodes and 
systems will not affect the update of the posteriori probability that sender S is a malicious node. 
Thus, Bayesian condition 4 is satisfied. Proof finished. 

The purpose of MIDG is to formulate the equilibrium solution *
ip  and *

iq , which can 
optimize the utility function of IDS.  

Depending on the payoff matrixes of the sender S and receiver R, the utility functions uS and 
uR are given as follows: 

{ }( )

( )

( , ) [(1 ) (1 2 ) ] (1 )( )

                  = (1 2 )

t
S A D i i i i a i i i i a i

i
t

i i i a
i

u P Q P p q W a W C W p q W C W

P p W a q C

β β

β
∈Γ

∈Γ

= ⋅ − + − − + − −∑

⋅ − −∑
 ,       (6) 

( )

( )

( ) ( )

( , ) { ( (1 ) (1 2 ) ) (1 )

                     (1 ) ( )} (1 ) ( )

                 [ (2 ) ( )]

t
R A D i i i i d i i i i

i
t

i i f i d i i f i d i
i

t t
i i i f f d i i

i i

u P Q P p q W a W C W p q W

p q bC W C W P q bC W C W

q W p P a bC bC C P p W

β β

β

∈Γ

∈Γ

∈Γ ∈Γ

= − − − − − − −∑

− − + − − +∑

= ⋅ + − + − ⋅∑ ∑

 .             (7) 

Knowing that the resource is constraint and sensor nodes have different security weights 
respectively, sender S will choose to attack the sensor nodes whose security weight is larger 
relatively to get more payoffs. Thus, there exists a security-weight threshold of the sensor 
nodes. In order to maximize the utility function of S, sender S will only attack the sensor nodes 
whose security weights are above the threshold. Since the sender S and receiver R are rational, 
the key problem is how to calculate the security-weight threshold to get the set of vulnerable 
nodes.  

3.2 Node Security Weight Analysis 
The security weights of the sensor nodes can be given as 1 2 NW W W≥ ≥ ≥… . N is the number of 
the sensor nodes in the cluster. In order to investigate the attack characteristics of the sender to 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 12, December 2018                             5827 

sensor nodes, the sensor nodes are divided into different sets according to the security weights. 
The definition is as follows:  

Definition 3 The set SΓ of sensor nodes that are most vulnerable to attack and QΓ  that are 
more vulnerable to attack are defined below: 

(1 ) 2
,   1( )(1 )

(1 ) 2
,   1( )(1 )

(1 ) 2
,   1( )(1 )

S

S

S

S a
i S

a
j T j

S a
i Q

a
j T j

S a
i S Q

a
j T j

C a Q
W i

C
W

C a Q
W i

C
W

C a Q
W i

C
W

β

β

β

∈

∈

∈


 Γ ⋅ − − > ∀ ∈Γ
 −∑

 Γ ⋅ − − = ∀ ∈Γ
 −∑



Γ ⋅ − − < ∀ ∈Γ − Γ − Γ
−∑



 ,                          (8) 

where SΓ  is the cardinality of the set SΓ  and is denoted by AN , S QΓ − Γ − Γ denotes the set 
of sensor nodes that are neither in set SΓ  nor in set QΓ . 

The value of utility function of S is optimal depending on Definition 3. The explanation of 
the conclusion above and sets division of sensor nodes in Definition 3 will be presented in the 
proof of Theorem 2 below.  

Lemma 1  If the sensor nodes hold unequal security weights, then the set SΓ  and QΓ  are 
unique. SΓ  is composed of sensor nodes with the highest security weight, satisfying the 
conclusions below: 

1) If 
1

1( (1 ) 2 ) / (1 )
N

N a a
j j

W N C a Q C
W

β
=

> − − − ∑ , then AN N= , SΓ = Γ , QΓ =∅ . 

2) If 
1

1( (1 ) 2 ) / (1 )
N

N a a
j j

W N C a Q C
W

β
=

≤ − − − ∑ , then AN is calculated by the following 

formulas: 

1

1

1

(1 ) 2

1 (1 )

(1 ) 2

1 (1 )

A
A

A
A

A a
N

N

a
j j

A a
N

N

a
j j

N C a QW
C

W

N C a QW
C

W

β

β

=

+

=

⋅ − − >   ⋅ −∑    
 ⋅ − − ≤
  
 ⋅ −∑    

.                                            (9) 

Proof. In conclusion 1), if 
1

1( (1 ) 2 ) / (1 )
N

N a a
j j

W N C a Q C
W

β
=

> − − − ∑ and i N∀ < , then 

i NW W≥ . Thus, (1 ) 2
1( )(1 )

S

a
i

a
j T j

N C a QW
C

W

β

∈

⋅ − −
>

−∑
 is clearly established. It can be derived that AN N= , 

SΓ = Γ , QΓ =∅ . In summary, the conclusion 1) is proved definitely. 
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In conclusion 2), to prove that AN  exists and satisfies formula (9), it should be ensured that 
the existence and uniqueness of AN  are certified.  

1. Proof the existence. Considering 
1

1( (1 ) 2 ) / (1 )
N

N a a
j j

W N C a Q C
W

β
=

≤ − − − ∑ , we have 

AN N< . If Ai N∀ < , then 

1

(1 ) 2

1 (1 )
A

A

A a
i N

N

a
j j

N C a QW W
C

W

β

=

⋅ − −
≥ >

 
⋅ −∑  

 

. Combined with formula (9), it 

follows that 1
1

1 (1 ) (1 ) 2
A

A

N

N a A a
j j

W C N C a Q
W

β+
=

 
⋅ − ≤ ⋅ − −∑  

 
. Then, 

1

1
1

1 (1 )
A

A

N

N a
j j

W C
W

+

+
=

 
⋅ − =∑  

 
 

1
1

11 (1 )
A

A

N

N a
j j

W C
W+

=

  
+ ⋅ − ∑     

( 1) (1 ) 2A aN C a Qβ≤ + ⋅ − − . Thus, the inequality is derived that 

1
1

1

( 1) (1 ) 2

1 (1 )
A

A

A a
N

N

a
j j

N C a QW
C

W

β
+

+

=

+ ⋅ − −
≤

 
⋅ −∑  

 

. Hence, it is proved that the set of sensor nodes whose 

number is AN  with the highest security weight satisfies the conditional constraints in formula 
(8). 

2. Proof of the uniqueness. Assume a situation where set SΓ  is composed of m sensor nodes 

and Am N< . From formula (9), we have 
1

1 2
1

A

A

N

N A
j j a

a QW N
W C

β
=

 
> −∑   − 

, then it is inferred that 

1

1 2( )
1

A

A

N

N A
j j a

a QW N m m
W C

β
=

 
− − > −∑   − 

. Noticing Am N<  and 
Ai NW W≥  if Ai N< , it follows that 

1 Am NW W+ ≥ . Hence, we have 1
1 1 1 1

1 1 1 1A A

A A A

N Nm m

m N N N
j j j mj j j j

W W W W
W W W W+

= = = +

       
≥ = − ≥∑ ∑ ∑ ∑              

       
 

1

1 2( )
1

A

A

N

N A
j j a

a QW N n m
W C

β
=

 
− − > −∑   − 

. That is 1
1

( (1 ) 2 ) / (1 )( 1 / )
m

m a a j
j

W m C a Q C Wβ+
=

> ⋅ − − − ∑ . 

Obviously, it conflicts with the above conclusion. The assumption Am N<  is invalid 
according to the analysis. Similarly, it can be certified that Am N> is impossible. The 
uniqueness of AN  is proved. 

Theorem 2 In the cluster of WSNs, if sender S is rational, then it will never attack sensor 
nodes that belong to the set S QΓ − Γ − Γ . 

Proof. If 
1

( (1 ) 2 ) / (1 )( 1 / )
N

N a a j
j

W N C a Q C Wβ
=

> − − − ∑  and S QΓ − Γ − Γ =∅ , the Theorem 2 

is obviously true.  

If 
1

( (1 ) 2 ) / (1 )( 1 / )
N

N a a j
j

W N C a Q C Wβ
=

≤ − − − ∑  and S QΓ − Γ − Γ ≠ ∅ , a vector 1 1 1
1 2( , ,DQ q q=  

1 )Nq…,  is constructed. The detailed definition is as follows: 
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1
1

{1 [ (1 ) 2 ] / 1 / } /2 ,  

0,                                                                                  

AN

a A a i j S
ji

S

C N C a Q W W a i
q

i

β β
=

 − − ⋅ − − ⋅ ∈Γ∑= 
 ∈Γ − Γ

            (10) 

Assume that a rational sender will attack at least one sensor node in the set S QΓ − Γ − Γ . The 
attack strategy is 1 2( , , )A NP p p p= …, such that 0

S Qi ip∈Γ−Γ −Γ >∑ . Then the strategy 
1 1 1 1

1 2( , , )A NP p p p= …,  is constructed such that 1 0
S Qi ip∈Γ−Γ −Γ =∑ . The distribution of 1

ip  is as 
follows: 

1

,                        ,
,  

,                         
0,                         

S Q

i S

n j
i

i

i Q

S Q

p i i n
p p i n

p
p i

i

∈Γ−Γ −Γ

∈Γ ≠
 + =∑= 

∈Γ
 ∈Γ − Γ − Γ

                                   (11) 

Our objective is to prove the result 1( , ) ( , )S A D S A Du P Q u P Q< . The utility functions of the 
attack strategy AP and 1

AP  should be primarily calculated, respectively. Then, the rational 
sender S will select the strategy with larger value of utility function Su . Depending on formula 
(6), (10), (11) and 1

n nq q≥ , it can be obtained that: 
1 ( ) ( ) 1

( ) ( )

,

( , ) ( , ) (1 2 ) (1 2 )

                                      = (1 2 ) ( (1 2 )

                            
S Q

t t
S A D S A D i i i a i i i a

i i
t t

i i i a i i i a
i i i n

u P Q u P Q P p W a q C P p W a q C

P p W a q C P p W a q C

β β

β β
∈Γ ∈Γ

∈Γ ∈Γ +Γ ≠

− = ⋅ − − − ⋅ − −∑ ∑

⋅ − − − ⋅ − −∑ ∑

( )

( )

           ( ) (1 2 ))

                                     (1 2 ) (1 2 )

                                     (1 2

S Q

S Q S Q

n j n n a
i

t
i i i a i n n a

i i

t
i i

p p W a q C

P p W a q C p W a q C

P p W a

β

β β

β

∈Γ−Γ −Γ

∈Γ−Γ −Γ ∈Γ−Γ −Γ

+ + ⋅ − −∑

 
= ⋅ − − − − −∑ ∑ 

 

≤ ⋅ − 1

( )

1

) (1 2 )

(1 ) 2                                      = (1 2 )
1 /

                               

S Q S Q

A
S Q S Q

i a i n n a
i i

t A a
i i i a i N

i i
j

j

q C p W a q C

N C a QP p W a q C p
W

β

β
β

∈Γ−Γ −Γ ∈Γ−Γ −Γ

∈Γ−Γ −Γ ∈Γ−Γ −Γ

=

 
− − − −∑ ∑ 

 
 
 ⋅ − −
⋅ − − −∑ ∑ 
 ∑ 
 

( )

1
      (1 ) ( (1 ) 2 ) / 1 /

                                      <0

A

S Q

N
t

i i a A a j
i j

P p W C N C a Q Wβ
∈Γ−Γ −Γ =

 ≤ ⋅ − − ⋅ − −∑ ∑ 
 

. 

A rational sender tends to choose the most profitable behaviors, and the strategy 1
AP  gives 

the sender more payoff than AP . That is to say, sender S will choose strategy  1
AP  compared 

with AP . 
Theorem 2 illustrates that only the sensor nodes in SΓ  and QΓ  is attractive to sender S and 

receiver R. Sender S has no intention to attack the sensor nodes in S QΓ − Γ − Γ , even if these 
nodes are not defended by receiver R. Similarly, the rational receiver R will never allocate the 
limited resource to set S QΓ − Γ − Γ  to defend the attacks. 
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4. Solution of the Model 
In this section, the Bayesian equilibrium of MIDG is derived according to the characteristics 
of security weights in section 3. Considering the range of the parameters and the utility 
functions of the participants, the solution of equilibrium is classified in several cases below. 

Theorem 3 * *( , )A DP Q is the solution of equilibrium in MIDG if it holds that 
1) If D AN N≥ and (1 ) 2A aN C a Qβ− ≥ ，then 

 

( )

1 1

*
( )

1 1

( 1),           1 1(2 )

[0, ( 1)],  1 1(2 )

0,                                                                 
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+
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                    S Qi
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








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*
1

(1 ) 21 (1 ),  12

0,                                                       
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N
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S
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a Wq W

i

β
β

=

− − − − ∈Γ ∑= 

 ∈Γ − Γ

, 

where AP  denotes the sum of the attack probabilities allocated in the set SΓ , *
i ip P∈Γ =∑ ，

*
i iq Q∈Γ =∑  , and ( )

1( (1 / ))(( ) / ( (2 )))A

A

N t
jA A N j f d fP N W W bC C P a bCβ=> − + +∑ . 

2) If D AN N< ，then 

1( )

*
1( )
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,       
(2 )

[0, ],  
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D
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i i Nt
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1
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i N
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W W
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+
+

+

 +
− >= 

 <

, 

where *
i ip P∈Γ =∑ , and *

i iq Q∈Γ <∑ . 
3) If D AN N≥ and (1 ) 2aN C a Qβ− < ，then 

* ( )

*

( ) / (2 )

(1 ) / 2

t
i f d f

i a

p bC C P a bC
i

q C a

β

β

 = + + ∈Γ
= −

, 

where *
i ip P∈Γ <∑ ，and *

i iq Q∈Γ <∑ . 
Proof. Assume that * *( , )A DP Q is Bayesian equilibrium of MIDG. Noticing that sender S 

chooses the strategy that guarantees the maximum revenue of the utility function, the attack 
probability to sensor node i tends to zero in case of ( ) (1 2 ) 0t

i i a
i

P W a q Cβ
∈Γ
⋅ − − <∑ . If 

( ) ( )0 (1 2 ) (1 2 )t t
i i a j j a

i j
P W a q C P W a q Cβ β

∈Γ ∈Γ
≤ ⋅ − − < ⋅ − −∑ ∑ , sender S has plenty of incentive to 
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decrease *
ip  and increase *

jp . Hence, *
ip  tends to zero. Depending on the utility function 

( , )S A Du P Q , the inequality can be obtained as follows: 
( ) ( )

( ) ( )

* * *

0 (1 2 ) (1 2 )

(1 2 ) (1 2 )

, , , , 0, 0

t t
i i a j j a

i j

t t
k k a i i a

k i

i j k

P W a q C P W a q C

P W a q C P W a q C

i j k p p p

β β

β β
∈Γ ∈Γ

∈Γ ∈Γ

 ≤ ⋅ − − = ⋅ − −∑ ∑



⋅ − − ≤ ⋅ − −∑ ∑
∀ ∈Γ > =

.                  (12) 

Similarly, noticing that the utility function ( , )R A Du P Q  has been calculated in formula (7), 
the inequality is formulated below. 

( ) ( )

( ) ( )

* * *
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β β

 ≤ ⋅ + − + = ⋅ + − +


⋅ + − + ≤ ⋅ + − +
∀ ∈Γ > =

     (13) 

Considering the resource constraints of the participants, the equilibrium solution of MIDG 
is computed in three cases. 

(1) When the resources of the participants are exhausted in MIDG, combined with formula 
(12) and (13), the equilibrium solution is calculated as follows: 
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. 

The necessary conditions for the existence of Bayesian equilibrium in this situation are as 
follows: 

( )

*

[ (2 ) ( )] 0,

(1 2 ) 0,                               

t
i i f f d A

i a i S

W p P a bC bC C P P

a q C W i

β

β

 ⋅ + − + ≥ ≤


− − ≥ ∈Γ
. 

It can be simplified as 
(1 ) 2

D A

A a

N N
N C a Qβ

≥
 − ≥

, where / ( )D f f dN a bC P bC Cβ= (2 + ) + ，

AP  denotes the sum of the attack probabilities allocated in the set SΓ ，

and ( )
1( (1 / ))(( ) / ( (2 )))A

A

N t
jA A N j f d fP N W W bC C P a bCβ=> − + +∑ . m  denotes the maximum 

positive integer not more than m. 
(2) The resource of sender S is exhausted while receiver R doesn’t use up its detection 

resource. That is *
i ip P∈Γ =∑ and *

i iq Q∈Γ <∑ . It can be inferred that ( )[ (2 )t
i i fW p P a bCβ⋅ + −  
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*( )] 0,  , , 0f d ibC C i j q+ = ∀ ∈Γ > . Otherwise, R will take advantage of the remaining resource 

to increase *
iq  to maximize the utility function ( , )R A Du P Q  strictly. Depending on the formula 

(12) and (13), the equilibrium solution is calculated that: 
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The necessary condition for the existence of Bayesian equilibrium in this situation is 

1

*

i ND

i
W W

q Q
+>

<∑ . Then, it can be simplified as 
1

1 2
1

D

i ND

N
D

W W i a

W aQN
W C+

+

>
< +∑

−
. Combined with the 

formula (9) in Lemma 1, it is inferred that D AN N< . 
(3) In this case, neither the sender S nor the receiver R is exhausted. It can be denoted as 

*
i ip P∈Γ <∑ and *

i iq Q∈Γ <∑ , respectively. Then, it is inferred that ( )[ (2 )t
i i fW p P a bCβ⋅ + −  

( )] 0,f dbC C i+ = ∈Γ  and *(1 2 ) 0,i a ia q C W iβ− − = ∈Γ . Otherwise, S and R will increase *
AP  

and *
DQ . Depending on the formula (6) and (7), the equilibrium solution is computed as 

follows: 
* ( )

*

( ) / (2 )

(1 ) / 2

t
i f d f

i a

p bC C P a bC
i

q C a

β

β

 = + + ∈Γ
= −

. 

The necessary conditions for the existence of Bayesian equilibrium in this case are 
DN N≥ and (1 ) 2aN C a Qβ− ≤ . Combined with Lemma 1, it can be simplified as AN N= . 
Thus, Theorem 3 has been certified. The Bayesian equilibrium of MIDG is evaluated in 

multiple cases. 
In case 1 of Theorem 3, all of the participants exhaust the resources, respectively. In other 

words, the resource P / Q is the positive factor to ( , ) / ( , )S A D R A Du P Q u P Q . In case 2, sender S 
exhausts the resource while receiver R doesn’t use up the resource. It indicates that the 
parameter a and d iC W  lead to too much defense cost. If the defense payoff is less than cost, R 
will not take any actions to defense the attack. In case 3, both sender S and receiver R do not 
use up the resources. That is to say, the Bayesian equilibrium is acquired before the exhaustion 
of resources. 

Corollary 1 In Theorem 3, for ' *
A AP P∀ ≠ , ' *

D DQ Q∀ ≠ , if '
ˆ

ˆ arg max ( , )
A AA S A DP PP u P Q
∈

=  and 
'

ˆ
ˆ arg max ( , )

D DD S A DQ Q
Q u P Q

∈
= , then * * 'ˆ( , ) ( , )S A D S A Du P Q u P Q>  and * * ' ˆ( , ) ( , )S A D S A Du P Q u P Q> . 

Proof. The proof of Corollary 1 is similar to the Theorem 2. 

5. Optimal Scheme of Intrusion Detection 

Based on the solution of Bayesian equilibrium * *( , )A DP Q and the parameters of MIDG, the 
optimal scheme of IDS in WSNs is designed in this section. The intrusion detection 
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mechanism consists of security management center, intrusion detection system R, and external 
nodes S. Fig. 2 depicts the interaction among the modules.  
 

External nodes S

Malicious nodes Legal nodes

Attack Cooperate Cooperate

Security management center

Intrusion detection system 
initialization

Intrusion detection system R

Load the game parameters

Calculate                     and( , )S A Du P Q ( , )R A Du P Q

Compare ND  and NA

   Calculate

Parameter 
storage 
module

Compare N(1-Ca) and       2a Qβ

*
DQ

IdleDefend

Attack-strategy 
module

Parameter-storage 
module

   Calculate *
SP

( 1) ˆ( 1| ( 1))t
S SP a tθ+ = +

Malicious behavior set

Frequency threshold

Monitoring times

Matching model

Priori 
probability

ρ

Matching Malicious behavior 
matching

Defense-strategy module

Timeout YesNo t=t+1

Monitoring module

 
Fig. 2. IDM based on the perfect Bayesian equilibrium 

 
Security management center in WSNs is primarily responsible for the update of knowledge 

database from the coordinator to cluster heads, which enables cluster head to cooperate with 
sensor nodes to detect and defense malicious nodes. 

It can be argued that the intrusion detection system R is the central portion to defend the 
attacks. When R is turned on, the IDS in cluster head starts to initialize the parameters a, b, Ca, 
Cd, Cf, Sδ , ( ) ˆ( 1| ( ))t

S SP a tθ = , etc. Since external nodes S may be malicious or legal, S can 
choose to take action “Attack” or “Cooperate”. In IDS, the priori probability ρ  is evaluated 
by monitoring module in the first stage. Cluster head cooperates with sensor nodes and then 
continuously monitor the behaviors from the external nodes. The database in monitoring 
module includes malicious behavior set, frequency threshold, monitoring times and matching 
model, which is essential to formulate the priori probability. In addition, it is taken into 
consideration that the sequence alignment algorithms in matching model will be accurate and 
high-efficiency, such as danger theory and robust theory. A timer is set in defense-strategy 
module to update the stage accurately. Once there is a timeout, the posterior probability in the 
tth stage is calculated for MIDG, which can be denoted as ( 1) ˆ( 1| ( 1))t

S SP a tθ+ = + . Due to the 
dynamic nature of IDS in WSNs, the optimal defense strategies are updated periodically by 
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defense-strategy module depending on the Bayesian rules and corresponding posterior 
probability ( 1) ˆ( 1| ( 1))t

S SP a tθ+ = + . The relevant parameters are stored and invoked promptly in 
parameter storage module. Then the comparison of (1 )aN C− , 2a Qβ , DN  and AN  can 
determine which case the Bayesian equilibrium belongs to in Theorem 3. According to the 
parameters ( 1) ˆ( 1| ( 1))t

S SP a tθ+ = + , ( , )S A Du P Q , and ( , )R A Du P Q , R calculates the solution of 
Bayesian equilibrium *

DQ . Then the security strategy is configured in the cluster.  
Similarly, to formulate the optimal attack strategy of external nodes S, the strategy-game 

module and parameter-storage module is invoked in each stage. Then the equilibrium solution 
*

SP  is reached.  
Since the constraints in MIDG are i

i
p P

∈Γ
≤∑ and 1i

i
q Q

∈Γ
≤ ≤∑ , the IDM based on the 

Bayesian game can be applied  to the clustered WSNs. More particularly, there is only one IDS 
in each cluster. 

The optimal defense strategy in MIDG consists of seven steps as described below: 
Step 1. Initialize the parameters adopted by MIDG, such as a, b, Ca, Cd, Cf, Sδ . Collect the 

behaviors of external nodes S and send them to the monitoring module. 
Step 2. For each cluster, depending on malicious behavior set, frequency threshold, 

monitoring times and matching model, evaluate the initial priori probability  ρ  in the first 
stage. 

Step 3. Load the game parameters. Then, calculate the utility functions ( , )S A Du P Q  and 
( , )R A Du P Q  according to formula (6) and (7). 
Step 4. Compute the posterior probability ( ) ˆ( 1| ( 1))t

S SP a tθ = +  in the (t-1)th stage 
Step 5. Compare the size of (1 )aN C−  and 2a Qβ  . Then compare the size of DN  and AN . 

Based on the results of comparison, the solution of Bayesian equilibrium can be determined 
and formulated.  

Step 6. Depending on theorem 3, compute and execute the optimal defense strategy 
* * * *

1 2{ , , , }D NQ q q q= …  in the tth stage. 
Step 7. If there is a timeout, compute the posterior probability ( 1) ˆ( 1| ( 1))t

S SP a tθ+ = +  in the 
tth stage and then turn to step 3. If not, continue to execute the current defense strategy. 

The optimal attack strategy in MIDG is similar to the steps above. What needs to be 
emphasized is that the solution of Bayesian equilibrium calculated in step 6 is 

* * * *
1 2{ , , , }A NP p p p= …  in the tth stage. 

6. Experimental Performance Evaluation 
To measure the performance of MIDG in clustered WSNs, MATLAB 2010a is adopted to 
perform the configuration of communication protocol and the parameters to validate our 
analytical results. From the perspective of the overall WSNs, the ZigBee specification is taken 
into consideration to set the initial parameters in the cluster. In order to simulate the 
communication environment in this paper, the resource consumption coefficient  of sender S 
and receiver R are defined as 0.1a dC C= = . The coefficient of false alarm is set to 0.01fC = . 
The total number of sensor nodes in each cluster is 12N = . There are 40 clusters in the 
network and there is no cooperative relationship between cluster heads during the overall 
simulation. The security weights of the sensor nodes are configured as 
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, which represents the importance of sensor nodes in the 
cluster. The resources that S and R hold are set to 1. The remaining parameters are defined as 

, , , respectively. 

 
Fig. 3.  Structure of the clustered WSNs 

 
To evaluate the conclusions analyzed in this paper, a typical scenario is set that receiver R 

executes random security strategies. The results of utility function  in 100 random 
strategies are shown in Table 3, respectively. Table 4 presents the solution of Bayesian 
equilibrium in the 20th stage in this paper. 

In Table 3,  denotes the maximum value of utility function in random strategies. 
 denotes the minimum value of utility function in random strategies.  represents the 

average value of utility function in random strategies. 
Depending on the numerical results in Table 3 and Table 4, it can be verified that the 

Bayesian equilibrium in this paper tends to choose the more “profitable” defense strategy than 
others. In addition, Table 4 reveals that there is no attack or defense strategy to sensor node i 
( ). The reason for this situation is that these nodes belongs to the set  , 
which can be calculated and proved in Theorem 2. 
 

Table 3. The results of utility function in random strategies 
symbol value 

 -0.571 

 -0.627 

 -0.720 
 

Table 4. The Bayesian equilibrium in the 20th stage 
,  

,  

,  

,  
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*
5 0.119p = , *

5 0.056q =  
*
6 0.231p = , *

6 0.051q =  
*
7 0.145p = , *

7 0.045q =  
*
8 0p = , *

8 0q =  
*
9 0p = , *

9 0q =  
*
10 0p = , *

10 0q =  
*
11 0p = , *

11 0q =  
*
12 0p = , *

12 0q =  
* 0.566Su = , * 0.567Ru = −  

 

6.1 Performance Test 
The parameters in CDG [24], ABDM [25] and MIDG can influence the behaviors of sender S 
who may attain a positive reward as it launches an attack if receiver R does not defend. In 
addition, a negative reward will render to the sender due to the defense from the receiver or the 
consumption it takes. Thus, the values of reward have an influence on the optimal strategy of 
the sender and receiver to make the decision whether to take action or not.  

In order to evaluate the effectiveness of our scheme, the MIDG algorithm is compared with 
one proposed by Jokar et al. [24] and Moosavi et al. [25] according to the training system and 
Markov chain. 

Considering the process of CDG, the support vector machine (SVM) and hybrid intrusion 
detection module (HIDM) are configured. In this experiment, the next generation intrusion 
detection system (NGIDS) from Australian defence force academy dataset (ADFA-D) is 
adopted as a sample to verify the performance of the SVM-based IDM. The relationships 
between nodes in the ADFA-D have 36 features and  they are divided into five classification 
groups: normal and four malicious behaviors (DDos, U2r, R21, Probe). Our analysis and 
comparisons are performed by using the samples as sets of regulation. The parameter that 
denotes the state of malicious behaviors are defined as (-1). Then, the normal behaviors are 
classified as (+1). The training  samples adopted in three algorithms comprises of 60 normal 
and 60 malicious cases. 

Based on the assumptions above, the MIDG in WSNs is simulated and compared with those 
in [24] and [25]. Let the parameters in the experimental environment be static. By repeating 
the experiments and computing average values respectively, it is possible to analyze the 
performance of the schemes. The simulation results are illustrated in Table 5. 

 
Table 5. The comparison of performance evaluation in different algorithms 

Number 
of 

Features 

Game 
Stage 

Literature [24] Literature [25] This paper 
Accuracy 

(%) 
Detection 
rate (%) 

Accuracy 
(%) 

Detection 
rate (%) 

Accuracy 
(%) 

Detection 
rate (%) 

12 
6 94.13 91.21 87.80 83.66 97.02 93.26 
12 95.54 92.37 88.10 85.21 97.31 94.33 
18 95.83 92.51 88.79 86.47 97.39 95.28 

24 
6 95.87 92.79 89.92 87.68 98.12 96.07 
12 95.91 93.02 89.97 87.71 98.79 97.43 
18 96.02 93.46 90.06 88.19 99.01 97.96 
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36 
6 96.17 93.78 90.85 88.64 98.15 96.09 
12 96.25 93.82 91.42 89.96 98.81 97.76 
18 97.08 93.90 91.45 90.23 99.04 97.99 

 
As is shown in Table 5, the scheme of MIDG with 36 features outperforms the CDG and 

ABDM in all of the game stages, in terms of accuracy and detection rate. This is due to the 
accurate posterior probability updated and modified by the Bayesian rules constantly. No 
matter how many features we adopt, the accuracy and detection rate tend to be stable in the 18th 
stage compared with the results in the 12th stage. The reason for this situation is that MIDG 
adopts the optimal strategy based on multi-stage game model and the cluster head in MIDG 
cooperates with multiple sensor nodes to detect and defense the malicious nodes, which 
improves the accuracy and detection rate to the maximum. As the allocation strategy of 
non-cooperative game in CDG and ABDM is formulated without considering whether the 
external node is a malicious node, the accuracy and detection rate of these algorithms is 
relative stable in each stage. The results in Table 5 indicate that the scheme of MIDG in this 
paper has strengths in intrusion detection of WSNs. 

6.2 Analysis of Parameters 
It is defined that success rate of the cluster represents the ratio of clusters that detect and 
defense the malicious nodes successfully. γ  denotes the number of external nodes in the 
cluster. According to the IDM in WSNs, the influence factors to success rate of the cluster are 
mainly depending on the detection rate, false alarm rate, wireless channel reliability (WCR) 
and the number of external nodes. By adjusting a, b, β  and γ in the simulation respectively, it 
is feasible to intestigate the impact of each parameter on the performance of IDS in WSNs. 
According to the deployment of experimental environment in Fig. 3, the success rates of 
clusters are computed in different values of the influence factors. By making repeated 
experiments and calculating average values of the factors respectively, it is reasonable to 
verify the robustness of MIDG. In CDG, the availability 

iSA  in the steady state of each sensor 
node and the discrete state space of WSNs are constant. The radial basis function (RBF) in 
ABDM is defined as 1 2exp( / 2)RBFF x x= − − . Each IDM system constructs the SVM locally 
and then calculates a set of support vector. Then, the experimental results are shown in Fig. 4 
(a) , Fig. 4 (b), Fig. 4(c) and Fig. 4 (d), respectively.  

Fig. 4 (a) indicates that the success rate of clusters in IDM increases with the detection 
rate. Furthermore, the performance in MIDG is always better than those in CDG and ABDM. 
Fig. 4 (b) shows that the number of clusters that detect and defense the malicious nodes 
successfully diminishes with the increase of false alarm rate. If b>0.18, then the performance 
in CDG is slightly better than that in MIDG. The relationship between wireless channel 
reliability and success rate of clusters in IDM is shown in Fig. 4 (c). When the wireless 
channel keeps high reliability, the success rate of clusters in MIDG has the best performance 
results compared with other  strategies. In Fig. 4 (d), the performance in MIDG is much better 
than other schemes if the number of external nodes is less than eight. Otherwise, the 
performance of the schemes in MIDG declines rapidly. 
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 (a) The curve in different detection rates   (b) The curve in different false alarm rates 

  
 (c) The curve in different WCR  (d) The curve in different external nodes  

Fig. 4. The success rate of clusters in intrusion detection 

7. Conclusion 
In this paper, a dynamic multi-stage intrusion detection game is proposed to analyze the 
wrestling between the cluster and external nodes in WSNs. Depending on hierarchical tree 
structure, the intrusion detection model is established with limited resource and Bayesian rules. 
The utility functions of sender S and receiver R are formulated according to the payoff 
matrixes of sensor node and external nodes. In order to timely update posteriori probability of 
the sender, the continuous time is divided into multiple stages. Assuming that the sender is 
rational and security weights of sensor nodes are unequal, the set of sensor nodes vulnerable to 
attack is properly evaluated. The solution to MIDG with the purpose of optimal payoff to both 
sides is calculated. Combined with the characteristics and topology of WSNs, the optimal 
scheme to maximize the security of IDS is proposed. It performs better than the existing 
schemes in WSNs from the result of experiment on the number of clusters successfully 
detecting and defending malicious nodes.  

 The previous researches are committed merely to technical strategies to ensure system 
security and detection rate. These strategies or algorithms can be implemented in network 
systems with sufficient computing resources and storage resources. Unfortunately, the 
extreme application scenarios in WSNs make it impossible to perform the critical security 
functions. How to implement the techniques of IDS in cluster-based WSNs is an urgent issue 
to be solved. We expect that the optimal scheme proposed in this paper will be valuable for the 
application of security mechanism in WSNs. 
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