• Title/Summary/Keyword: intracellular uptake

Search Result 178, Processing Time 0.026 seconds

Modulatory Effect of Kaempferitrin, a 3,7-Diglycosylflavone, on the LPS-Mediated Up-regulation of Surface Co-stimulatory Molecules and CD29-Mediated Cell-cell Adhesion in Monocytic- and Macrophage-like Cells (활성화된 단핵구 및 대식세포의 항원제시기능에 대한 Kaempferitrin의 조절 효과)

  • Kim, Byung-Hun;Cho, Dong-Ha;Cho, Jae-Youl
    • YAKHAK HOEJI
    • /
    • v.51 no.6
    • /
    • pp.482-489
    • /
    • 2007
  • Kaempferitrin, isolated from Kenaf (Hibiscus cannabinus), was examined to evaluate its modulatory effects on antigen-presenting cell functions of macrophages/monocytes such as phagocytosis of foreign materials, up-regulation of costimulatory molecules (CD40, CD80 and CD86), adhesion molecule activation, and antigen processing and presentation. Kaempferitrin strongly blocked up-regulation of CD40, CD80 and CD86, but not pattern recognition receptor (PRR) (e.g., TLR2). It also suppressed functional activation of CD29 (${\beta}1$-integrins), as assessed by cell-cell adhesion assay, required for T cell-antigen-presenting cell (APC) interaction. Furthermore, this compound did not block a simple activation of CD29, as assessed by cell-fibronectin adhesion assay. However, the compound did not diminish phagocytic uptake, an initial step for antigen processing, and ROS generation in RAW264.7 cells. In particular, to understand molecular mechanism of kaempferitrin-mediated inhibition, the regulatory role of LPS-induced signaling events was examined using immunoblotting analysis. Interestingly, this compound dose dependently suppressed the phosphorylation of $I{\kappa}B{\alpha}$, Src, Akt and Syk, demonstrating that it can negatively modulate the activation of these signaling enzymes. Therefore, our data suggested that kaempferitrin may be involved in regulating APC function-relevant immune responses of macrophages and monocytes by regulating intracellular signaling.

Inactivation of Mycobacteria by Radicals from Non-Thermal Plasma Jet

  • Lee, Chaebok;Subhadra, Bindu;Choi, Hei-Gwon;Suh, Hyun-Woo;Uhm, Han. S;Kim, Hwa-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1401-1411
    • /
    • 2019
  • Mycobacterial cell walls comprise thick and diverse lipids and glycolipids that act as a permeability barrier to antibiotics or other chemical agents. The use of OH radicals from a non-thermal plasma jet (NTPJ) for the inactivation of mycobacteria in aqueous solution was adopted as a novel approach. Addition of water vapor in a nitrogen plasma jet generated OH radicals, which converted to hydrogen peroxide ($H_2O_2$) that inactivated non-pathogenic Mycobacterium smegmatis and pathogenic Mycobacterium tuberculosis H37Rv. A stable plasma plume was obtained from a nitrogen plasma jet with 1.91 W of power, killing Escherichia coli and mycobacteria effectively, whereas addition of catalase decreased the effects of the former. Mycobacteria were more resistant than E. coli to NTPJ treatment. Plasma treatment enhanced intracellular ROS production and upregulation of genes related to ROS stress responses (thiolrelated oxidoreductases, such as SseA and DoxX, and ferric uptake regulator furA). Morphological changes of M. smegmatis and M. tuberculosis H37Rv were observed after 5 min treatment with $N_2+H_2O$ plasma, but not of pre-incubated sample with catalase. This finding indicates that the bactericidal efficacy of NTPJ is related to the toxicity of OH and $H_2O_2$ radicals in cells. Therefore, our study suggests that NTPJ treatment may effectively control pulmonary infections caused by M. tuberculosis and nontuberculous mycobacteria (NTM) such as M. avium or M. abscessus in water.

Improvement of Lipid Homeostasis Through Modulation of Low-density Lipoprotein Receptor Family by Functional Ingredients (천연 기능성 물질(Functional Ingredients)을 활용한 LDL 수용체과(科) 조절과 지질항상성 개선)

  • Jeong, Jeongho;Ryu, Yungsun;Park, Kibeum;Go, Gwang-woong
    • Food Engineering Progress
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Dyslipidemia, defined as elevated triglyceride (TG), total- and LDL-C, and/or decreased HDL-C levels, is considered a principal risk factor for cardiovascular disease. The low-density lipoprotein receptor (LDLR) family has been considered a key player in the prevention of dyslipidemia. The LDLR family consists of cytoplasmic membrane proteins and plays an important role not only in ligand-receptor binding and uptake, but also in various cell signaling pathways. Emerging reports state that various functional ingredients dynamically modulate the function of the LDLR family. For instance, oats stimulated the LDLR function in vivo, resulting in decreased body weight and improved serum lipid profiles. The stimulation of LRP6 by functional ingredients in vitro activated the Wnt/${\beta}-catenin$ pathway, subsequently suppressing the intracellular TG via inhibition of SREBP1, $PPAR{\gamma}$, and $C/EBP{\alpha}$. Furthermore, the extract of Cistanchetubulosa enhanced the expression of the mRNA of VLDLR, followed by a reduction in the serum cholesterol level. In addition, fermented soy milk diminished TG and total cholesterol levels while increasing HDL-C levels via activation of LRP1. To summarize, modulating the function of the LDLR family by diverse functional ingredients may be a potent therapeutic remedy for the treatment of dyslipidemia and cardiovascular diseases.

Biochemical and Biodiversity Insights into Heavy Metal Ion-Responsive Transcription Regulators for Synthetic Biological Heavy Metal Sensors

  • Jung, Jaejoon;Lee, Sang Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1522-1542
    • /
    • 2019
  • To adapt to environmental changes and to maintain cellular homeostasis, microorganisms adjust the intracellular concentrations of biochemical compounds, including metal ions; these are essential for the catalytic function of many enzymes in cells, but excessive amounts of essential metals and heavy metals cause cellular damage. Metal-responsive transcriptional regulators play pivotal roles in metal uptake, pumping out, sequestration, and oxidation or reduction to a less toxic status via regulating the expression of the detoxification-related genes. The sensory and regulatory functions of the metalloregulators have made them as attractive biological parts for synthetic biology, and the exceptional sensitivity and selectivity of metalloregulators toward metal ions have been used in heavy metal biosensors to cope with prevalent heavy metal contamination. Due to their importance, substantial efforts have been made to characterize heavy metal-responsive transcriptional regulators and to develop heavy metal-sensing biosensors. In this review, we summarize the biochemical data for the two major metalloregulator families, SmtB/ArsR and MerR, to describe their metal-binding sites, specific chelating chemistry, and conformational changes. Based on our understanding of the regulatory mechanisms, previously developed metal biosensors are examined to point out their limitations, such as high background noise and a lack of well-characterized biological parts. We discuss several strategies to improve the functionality of the metal biosensors, such as reducing the background noise and amplifying the output signal. From the perspective of making heavy metal biosensors, we suggest that the characterization of novel metalloregulators and the fabrication of exquisitely designed genetic circuits will be required.

Deletion of the oligopeptide transporter Lmo2193 decreases the virulence of Listeria monocytogenes

  • Li, Honghuan;Qiao, Yanjie;Du, Dongdong;Wang, Jing;Ma, Xun
    • Journal of Veterinary Science
    • /
    • v.21 no.6
    • /
    • pp.88.1-88.13
    • /
    • 2020
  • Background: Listeria monocytogenes is a gram-positive bacterium that causes listeriosis mainly in immunocompromised hosts. It can also cause foodborne outbreaks and has the ability to adapt to various environments. Peptide uptake in gram-positive bacteria is enabled by oligopeptide permeases (Opp) in a process that depends on ATP hydrolysis by OppD and F. Previously a putative protein Lmo2193 was predicted to be OppD, but little is known about the role of OppD in major processes of L. monocytogenes, such as growth, virulence, and biofilm formation. Objectives: To determine whether the virulence traits of L. monocytogenes are related to OppD. Methods: In this study, Lmo2193 gene deletion and complementation strains of L. monocytogenes were generated and compared with a wild-type strain for the following: adhesiveness, invasion ability, intracellular survival, proliferation, 50% lethal dose (LD50) to mice, and the amount bacteria in the mouse liver, spleen, and brain. Results: The results showed that virulence of the deletion strain was 1.34 and 0.5 orders of magnitude higher than that of the wild-type and complementation strains, respectively. The function of Lmo2193 was predicted and verified as OppD from the ATPase superfamily. Deletion of lmo2193 affected the normal growth of L. monocytogenes, reduced its virulence in cells and mice, and affected its ability to form biofilms. Conclusions: Deletion of the oligopeptide transporter Lmo2193 decreases the virulence of L. monocytogenes. These effects may be related to OppD's function, which provides a new perspective on the regulation of oligopeptide transporters in L. monocytogenes.

Evaluation of intracellular uptake of cyclic RGD peptides in integrin αvβ3-expressing tumor cells

  • Soyoung Lee;Young-Hwa Kim;In Ho Song;Ji Young Choi;Hyewon Youn;Byung Chul Lee;Sang Eun Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.92-101
    • /
    • 2020
  • The cyclic Arg-Gly-Asp (cRGD) peptide is well-known as a binding molecule to the integrin αvβ3 receptor which is highly expressed on activated endothelial cells and new blood vessels in tumors. Although numerous results have been reported by the usage of cRGD peptide-based ligands for cancer diagnosis and therapy, the distinct mechanisms, and functions of cRGD-integrin binding to cancer cells are still being investigated. In this study, we evaluated the internalization efficacy of different types of cRGD peptides (monomer, dimer and tetramer form) in integrin αvβ3 overexpressing cancer cells. Western blot and flow cytometric analysis showed U87MG expresses highly integrin αvβ3, whereas CT-26 does not show integrin αvβ3 expression. Cytotoxicity assay indicated that all cRGD peptides (0-200 µM) had at least 70-80% of viability in U87MG cells. Fluorescence images showed cRGD dimer peptides have the highest cellular internalization compare to cRGD monomer and cRGD tetramer peptides. Additionally, transmission electron microscope results clearly visualized the endocytic internalization of integrin αvβ3 receptors and correlated with confocal microscopic results. These results support the rationale for the use of cRGD dimer peptides for imaging, diagnosis, or therapy of integrin αvβ3-rich glioblastoma.

Preparation and Characterization of Casein Nanoparticles with Various Metal Ions as Drug Delivery Systems (다양한 금속 이온을 이용한 카세인 단백질 나노입자 형성 및 약물 전달체 특성 연구)

  • Minju Kim;Seulgi Lee;Joon Sig Choi
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.121-125
    • /
    • 2023
  • Casein is a milk protein and one of the most important nutrients in milk. The composition is over 80% in cow's milk and about 20~45% in human's milk. Casein is highly biocompatible and biodegradable, so it has been studied for various biomedical materials applications as well as drug delivery systems. It is widely known that casein can be prepared as nanoparticles in the presence of the Ca2+ metal ion. Because casein is amphiphilic, hydrophobic drugs could be loaded inside to form a protein-based drug delivery system. In this study, we studied the optimum conditions for casein nanoparticle formation using natural metal ions present in the body, such as calcium, magnesium, zinc, and iron. It was confirmed that nanoparticles have a uniform size of around 150 nm and negative zeta potential values. In addition, it was demonstrated that casein nanoparticles have a cell viability of more than 80% and efficient intracellular uptake properties using confocal microscopy. From the results, it was also shown that the casein nanoparticles prepared using various metal ions have the potential to be biocompatible drug delivery carriers.

Bioremoval of Cadmium(II), Nickel(II), and Zinc(II) from Synthetic Wastewater by the Purple Nonsulfur Bacteria, Three Rhodobacter Species

  • Jin Yoo;Eun-Ji Oh;Ji-Su Park;Deok-Won Kim;Jin-Hyeok Moon;Deok-Hyun Kim;Daniel Obrist;Keun-Yook Chung
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.640-648
    • /
    • 2023
  • The purpose of this study was to determine the inhibitory effect of heavy metals [Cd(II), Ni(II), and Zn(II)] on the growth of Rhodobacter species (Rhodobacter blasticus, Rhodobacter sphaeroides, and Rhodobacter capsulatus) and their potential use for Cd(II), Ni(II), and Zn(II) bioremoval from liquid media. The presence of toxic heavy metals prolonged the lag phase in growth and reduced biomass growth for all three Rhodobacter species at concentrations of Cd, Ni, and Zn above 10 mg/L. However, all three Rhodobacter species also had a relatively high specific growth rate against each toxic heavy metal stress test for concentrations below 20 mg/L and possessed a potential bioaccumulation ability. The removal efficiency by all strains was highest for Cd(II), followed by Ni(II), and lowest for Zn(II), with the removal efficiency of Cd(II) by Rhodobacter species being 66% or more. Among the three strains, R. blasticus showed a higher removal efficiency of Cd(II) and Ni(II) than R. capsulatus and R. sphaeroides. Results also suggest that the bio-removal processes of toxic heavy metal ions by Rhodobacter species involve both bioaccumulation (intracellular uptake) and biosorption (surface binding).

Lipolytic Effect of Methanol Extracts from Luffa cylindrica in Mature 3T3-L1 Adipocytes (분화된 3T3-L1 세포에서 수세미오이 메탄올 추출물의 지방분해 효과)

  • Cha, Seung-Youn;Jang, Ja-Young;Lee, Yoo-Hyun;Lee, Gyu-Ok;Lee, Ho-Joon;Hwang, Kwon-Tack;Kim, Yong-Jae;Jun, Woo-Jin;Lee, Jeong-Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.6
    • /
    • pp.813-819
    • /
    • 2010
  • The intracellular lipid droplets were stained with Oil Red O dye and quantified. Compared to the control, lipid accumulation was significantly decreased by 19.4% with the treatment of LCM at the concentration of $1000\;{\mu}g$/mL. Intracellular triglyceride (TG) level was also reduced by 21% at the concentration of $1000\;{\mu}g$/mL. To determine the mechanism for the reduction in TG content, levels of glucose uptake and glycerol release were measured. Incubation of the 3T3-L1 adipocytes with LCM did not affect the cellular uptake of glucose. However, the level of free glycerol released into the cultured medium drastically increased by 24.3% with the treatment of LCM. In subsequent measurements using quantitative real-time PCR, mRNA levels of hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) except lipoprotein lipase (LPL) were significantly elevated at higher concentration. These results suggest that LCM partially stimulates the lipolysis through the induction of HSL and/or ATGL gene expression, resulting in the reduced lipid accumulation and increased glycerol release.

The Possible Mechanisms Involved in Citrinin Elimination by Cryptococcus podzolicus Y3 and the Effects of Extrinsic Factors on the Degradation of Citrinin

  • Zhang, Xiaoyun;Lin, Zhen;Apaliya, Maurice Tibiru;Gu, Xiangyu;Zheng, Xiangfeng;Zhao, Lina;Abdelhai, Mandour Haydar;Zhang, Hongyin;Hu, Weicheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2119-2128
    • /
    • 2017
  • Citrinin (CIT) is a toxic secondary metabolite produced by fungi belonging to the Penicillium, Aspergillus, and Monascus spp. This toxin has been detected in many agricultural products. In this study, a strain Y3 with the ability to eliminate CIT was screened and identified as Cryptococcus podzolicus, based on the sequence analysis of the internal transcribed spacer region. Neither uptake of CIT by cells nor adsorption by cell wall was involved in CIT elimination by Cryptococcus podzolicus Y3. The extracellular metabolites of Cryptococcus podzolicus Y3 stimulated by CIT or not showed no degradation for CIT. It indicated that CIT elimination was attributed to the degradation of intracellular enzyme(s). The degradation of CIT by C. podzolicus Y3 was dependent on the type of media, yeast concentration, temperature, pH, and initial concentration of CIT. Most of the CIT was degraded by C. podzolicus Y3 in NYDB medium at 42 h but not in PDB medium. The degradation rate of CIT was the highest (94%) when the concentration of C. podzolicus Y3 was $1{\times}10^8cells/ml$. The quantity of CIT degradation was highest at $28^{\circ}C$, and there was no degradation observed at 3$5^{\circ}C$. The study also showed that acidic condition (pH 4.0) was the most favorable for CIT degradation by C. podzolicus Y3. The degradation rate of CIT increased to 98% as the concentration of CIT was increased to $20{\mu}g/ml$. The toxicity of CIT degradation product(s) toward HEK293 was much lower than that of CIT.