DOI QR코드

DOI QR Code

천연 기능성 물질(Functional Ingredients)을 활용한 LDL 수용체과(科) 조절과 지질항상성 개선

Improvement of Lipid Homeostasis Through Modulation of Low-density Lipoprotein Receptor Family by Functional Ingredients

  • 정정호 (국민대학교 식품영양학과) ;
  • 류융선 (국민대학교 식품영양학과) ;
  • 박기범 (국민대학교 식품영양학과) ;
  • 고광웅 (국민대학교 식품영양학과)
  • Jeong, Jeongho (Department of Foods and Nutrition, Kookmin University) ;
  • Ryu, Yungsun (Department of Foods and Nutrition, Kookmin University) ;
  • Park, Kibeum (Department of Foods and Nutrition, Kookmin University) ;
  • Go, Gwang-woong (Department of Foods and Nutrition, Kookmin University)
  • 투고 : 2017.01.17
  • 심사 : 2017.02.08
  • 발행 : 2017.02.28

초록

Dyslipidemia, defined as elevated triglyceride (TG), total- and LDL-C, and/or decreased HDL-C levels, is considered a principal risk factor for cardiovascular disease. The low-density lipoprotein receptor (LDLR) family has been considered a key player in the prevention of dyslipidemia. The LDLR family consists of cytoplasmic membrane proteins and plays an important role not only in ligand-receptor binding and uptake, but also in various cell signaling pathways. Emerging reports state that various functional ingredients dynamically modulate the function of the LDLR family. For instance, oats stimulated the LDLR function in vivo, resulting in decreased body weight and improved serum lipid profiles. The stimulation of LRP6 by functional ingredients in vitro activated the Wnt/${\beta}-catenin$ pathway, subsequently suppressing the intracellular TG via inhibition of SREBP1, $PPAR{\gamma}$, and $C/EBP{\alpha}$. Furthermore, the extract of Cistanchetubulosa enhanced the expression of the mRNA of VLDLR, followed by a reduction in the serum cholesterol level. In addition, fermented soy milk diminished TG and total cholesterol levels while increasing HDL-C levels via activation of LRP1. To summarize, modulating the function of the LDLR family by diverse functional ingredients may be a potent therapeutic remedy for the treatment of dyslipidemia and cardiovascular diseases.

키워드

참고문헌

  1. Awan Z, Denis M, Bailey D, Giaid A, Prat A, Goltzman D, Seidah NG, Genest J. 2011. The LDLR deficient mouse as a model for aortic calcification and quantification by micro-computed tomography. Atherosclerosis 219: 455-462. https://doi.org/10.1016/j.atherosclerosis.2011.08.035
  2. Basford JE, Wancata L, Hofmann SM, Silva RA, Davidson WS, Howles PN, Hui DY. 2011. Hepatic deficiency of low density lipoprotein receptor-related protein-1 reduces high density lipoprotein secretion and plasma levels in mice. J. Biol. Chem. 286: 13079-13087. https://doi.org/10.1074/jbc.M111.229369
  3. Borradaile NM, Wilcox LJ, Edwards JY, Murray WH. 2002. Soya phytoestrogens, genistein and daidzein, decrease apolipoprotein B secretion from HepG2 cells through multiple mechanisms. Biochem. J. 366: 531-539. https://doi.org/10.1042/bj20020046
  4. Boucher P, Gotthardt M, Li WP, Anderson RG, Herz J. 2003. LRP: role in vascular wall integrity and protection from atherosclerosis. Science 300: 329-332. https://doi.org/10.1126/science.1082095
  5. Brown MS, Dana SE, Goldstein JL. 1974. Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in cultured human fibroblasts comparison of cells from a normal subject and from a patient with homozygous familiar hypercholesterolemia. J. Biol. Chem. 249: 789-796.
  6. Brown MS, Goldstein JL. 1974. Familial hypercholesterolemia: defective binding of lipoproteins to cultured fibroblasts associated with impaired regulation of 3-hydroxy-3-methyl glutaryl coenzyme A reductase activity. Proc. Natl. Acad. Sci. USA 71: 788-792. https://doi.org/10.1073/pnas.71.3.788
  7. Brown MS, Goldstein JL. 1976. Receptor-mediated control of cholesterol metabolism. Science 191: 150-154. https://doi.org/10.1126/science.174194
  8. Bursill C, Roach PD, Bottema CD, Pal S. 2001. Green tea upregulates the low-density lipoprotein receptor through the sterolregulated element binding protein in HepG2 liver cells. J. Agric. Food Chem. 49: 5639-5645. https://doi.org/10.1021/jf010275d
  9. Chen CW, Cheng HH. 2006. A rice bran oil diet increases LDLreceptor and HMG-CoA reductase mRNA expressions andinsulin sensitivity in rats with streptozotocin/nicotinamide-induced type 2diabetes. J. Nutr. 136: 1472-1476. https://doi.org/10.1093/jn/136.6.1472
  10. Chou CH, Chang YY, Tzang BS, Hsu CL, Lin YL, Lin HW Chen YC. 2012. Effects of taurine on hepatic lipid metabolism andantiinflammation in chronic alcohol-fed rats. Food Chem. 135: 24-30. https://doi.org/10.1016/j.foodchem.2012.04.036
  11. Cui Y, Niziolek PJ, MacDonald BT, Zylstra CR, Alenina N, Robinson DR, Zhong Z, Matthes S, Jacobsen CM, Conlon RA. 2011. Lrp5 functions in bone to regulate bone mass. Nat. Med. 17: 684-691. https://doi.org/10.1038/nm.2388
  12. Frank-Kamenetsky M, Grefhorst A, Anderson NN, Racie TS, Bramlage B, Akinc A, Butler D, Charisse K, Dorkin R, Fan Y. 2008. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl. Acad. Sci. USA 105: 11915-11920. https://doi.org/10.1073/pnas.0805434105
  13. Fujino T, Asaba H, Kang MJ, Ikeda Y, Sone H, Takada S, Kim DH, Ioka RX, Ono M, Tomoyori H. 2003. Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proc. Natl. Acad. Sci. USA 100: 229-234. https://doi.org/10.1073/pnas.0133792100
  14. Go GW, Mani A. 2012. Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J. Biol. Med. 85: 19-28.
  15. Go GW. 2015. Low-density lipoprotein receptor-related protein 6 (LRP6) is a novel nutritional therapeutic target for hyperlipidemia, non-alcoholic fatty liver disease, and atherosclerosis. Nutrients 7: 4453-4464. https://doi.org/10.3390/nu7064453
  16. Go GW, Srivastava R, Hernandez-Ono A, Gang G, Smith SB, Booth CJ, Ginsberg HN Mani A. 2014. The combined hyperlipidemia caused by impaired Wnt-LRP6 signaling is reversed by Wnt3a rescue. Cell Metab. 19: 209-220. https://doi.org/10.1016/j.cmet.2013.11.023
  17. Goldstein JL, Brown MS. 1973. Familial hypercholesterolemia: identification of a defect in the regulation of 3-hydroxy-3-methyl glutaryl coenzyme A reductase activity associated with overproduction of cholesterol. Proc. Natl. Acad. Sci. USA 70: 2804-2808. https://doi.org/10.1073/pnas.70.10.2804
  18. Goldstein JL, Brown MS. 1974. Binding and degradation of low density lipoproteins by cultured human fibroblasts comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J. Biol. Chem. 249: 5153-5162.
  19. Goldstein JL, Dana SE, Brown MS. 1974. Esterification of low density lipoprotein cholesterol in human fibroblasts and its absence in homozygous familial hypercholesterolemia. Proc. Natl. Acad. Sci. USA 71: 4288-4292. https://doi.org/10.1073/pnas.71.11.4288
  20. Gordts PL, Reekmans S, Lauwers A, VanDongen A, Verbeek L, Roebroek AJM. 2009. Inactivation of the LRP1 intracellular NPxYxxL motif in LDLR-deficient mice enhances postprandial dyslipidemia and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 29: 1258-1264. https://doi.org/10.1161/ATVBAHA.109.192211
  21. Goudriaan JR, Santo SM, Voshol PJ, Teusink B, van Dijk KW, van Vlijmen BJ, Romijn JM, Havekes LM, Rensen PC. 2004. The VLDL receptor plays a major role in chylomicron metabolism by enhancing LPL-mediated triglyceride hydrolysis. J. Lipid Res. 45: 1475-1481. https://doi.org/10.1194/jlr.M400009-JLR200
  22. Graham MJ, Lemonidis KM, Whipple CP, Subramaniam A, Monia BP, Crooke ST, Crooke RM. 2007. Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice. J. Lipid Res. 48: 763-767. https://doi.org/10.1194/jlr.C600025-JLR200
  23. Gudbrandsen OA, Wergedahl H, Mork S, Liaset B, Espe M, Berge RK. 2006. Dietary soya protein concentrate enriched with isoflavones reduced fatty liver, increased hepatic fatty acid oxidation and decreased the hepatic mRNA level of VLDL receptor in obese Zucker rats. Br. J. Nutr. 96: 249-257. https://doi.org/10.1079/BJN20061837
  24. Hobbs HH, Brown MS, Goldstein JL. 1992. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum. Mutat. 1: 445-466. https://doi.org/10.1002/humu.1380010602
  25. Hobbs HH, Russell DW, Brown MS, Goldstein JL. 1990. The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein. Annu. Rev. Genet. 24: 133-170. https://doi.org/10.1146/annurev.ge.24.120190.001025
  26. Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J. 1993. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J. Clin. Invest. 92: 883. https://doi.org/10.1172/JCI116663
  27. Jang YJ, Son HJ, Ahn J, Jung CH, Ha T. 2016. Coumestrol modulates Akt and Wnt/${\beta}$-catenin signaling during the attenuation of adipogenesis. Food Funct. 7: 4984-4991. https://doi.org/10.1039/C6FO01127F
  28. Jeon H, Blacklow SC. 2005. Structure and physiologic function of the low-density lipoprotein receptor. Annu. Rev. Biochem. 74: 535-562. https://doi.org/10.1146/annurev.biochem.74.082803.133354
  29. Jones C, Garuti R, Michaely P, Li WP, Maeda N, Cohen JC, Herz J, Hobbs HH. 2007. Disruption of LDL but not VLDL clearance in autosomal recessive hypercholesterolemia. J. Clin. Invest. 117: 165-174. https://doi.org/10.1172/JCI29415
  30. Jones C, Hammer RE, Li WP, Cohen JC, Hobbs HH, Herz J. 2003. Normal sorting but defective endocytosis of the low density lipoprotein receptor in mice with autosomal recessive hypercholesterolemia. J. Biol. Chem. 278: 29024-29030. https://doi.org/10.1074/jbc.M304855200
  31. Kim MB, Song Y, Kim C, Hwang JK. 2014. Kirenol inhibits adipogenesis through activation of the Wnt/${\beta}$-catenin signaling pathway in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 445: 433-438. https://doi.org/10.1016/j.bbrc.2014.02.017
  32. Kim SY, Kim YJ, An YJ, Lee HJ, Lee SH, Kim JB, Kim HR, Lee SJ. 2016. Black Rice (Oryza Sativa, Heukmi) Extracts stimulate osteogenesis but inhibit adipogenesis in mesenchymal C3H10T1/2 cells. J. Food Biochem. 40: 235-247. https://doi.org/10.1111/jfbc.12210
  33. Kim YS, Yoon SB, Lee H, Han W, Oh H, Lee WJ, Lee SM. 2014. Fermentation of soy milk via Lactobacillus plantarum improves dysregulated lipid metabolism in rats on a high cholesterol diet. PLoS One 9: e88231. https://doi.org/10.1371/journal.pone.0088231
  34. Lammi C, Zanoni C, Scigliuolo GM, D'Amato A, Arnoldi A. 2014. Lupin peptides lower low-density lipoprotein (LDL) cholesterol through an up-regulation of the LDL receptor/sterol regulatory element binding protein 2 (SREBP2) pathway at HepG2 cell line. J. Agric. Food Chem. 62: 7151-7159. https://doi.org/10.1021/jf500795b
  35. Lauzier B, Delemasure S, Collin B, Duvillard L, Menetrier F, Vergely C, Connat JL, Rochette L. 2011. Effect of a chronic cholesterol-rich diet on vascular structure and oxidative stress in LDLR-/-mice. Cell. Physiol. Biochem. 27: 31-36. https://doi.org/10.1159/000325211
  36. Lee DH, Choi SS, Kim BB, Kim SY, Kang BS, Lee SJ, Park HJ. 2013. Effect of alcohol-free red wine concentrates on cholesterol homeostasis: An in vitro and in vivo study. Process Biochem. 48: 1964-1971. https://doi.org/10.1016/j.procbio.2013.09.007
  37. Lee H, Bae S, Kim K, Kim W, Chung SI, Yoon Y. 2010. ${\beta}$- Catenin mediates the anti-adipogenic effect of baicalin. Biochem. Biophys. Res. Commun. 398: 741-746. https://doi.org/10.1016/j.bbrc.2010.07.015
  38. Lee H, Bae Y, Kim S, Yoon Y. 2011. Wnt/${\beta}$-catenin pathway mediates the anti-adipogenic effect of platycodin D, a natural compound found in Platycodon grandiflorum. Life Sci. 89: 388-394. https://doi.org/10.1016/j.lfs.2011.07.006
  39. Lee H, Bae S, Yoon Y. 2013. The anti-adipogenic effects of (-) epigallocatechin gallate are dependent on the Wnt/${\beta}$-catenin pathway. J. Nutr. Biochem. 24: 1232-1240. https://doi.org/10.1016/j.jnutbio.2012.09.007
  40. Lee J, Lee J, Jung E, Hwang W, Kim YS, Park D. 2010. Isorhamnetin- induced anti-adipogenesis is mediated by stabilization of ${\beta}$-catenin protein. Life Sci. 11: 416-423.
  41. Li C, Zhou L. 2015. Inhibitory effect 6-gingerol on adipogenesis through activation of the Wnt/${\beta}$-catenin signaling pathway in 3T3-L1 adipocytes. Toxicol. Vitro. 30: 394-401. https://doi.org/10.1016/j.tiv.2015.09.023
  42. Li Q, Liu Z, Huang J, Luo G, Liang Q, Wang D, Ye X, Wu C, Wang L, Hu J. 2013. Anti?obesity and hypolipidemic effects of Fuzhuan brick tea water extract in high?fat diet?induced obese rats. J. Sci. Food Agric. 93: 1310-1316. https://doi.org/10.1002/jsfa.5887
  43. Li Y, Cam J, Bu G. 2001. Low-density lipoprotein receptor family. Mol. Neurobiol. 23: 53-67. https://doi.org/10.1385/MN:23:1:53
  44. Liu SH, He SP, Chiang MT. 2012. Effects of long-term feeding of chitosan on postprandial lipid responses and lipid metabolism in a high-sucrose-diet-impaired glucose-tolerant rat model. J. Agric. Food Chem. 60: 4306-4313. https://doi.org/10.1021/jf300792b
  45. Liu W, Mani S, Davis NR, Sarrafzadegan N, Kavathas PB, Mani A. 2008. Mutation in EGFP domain of LDL receptor-related protein 6 impairs cellular LDL clearance. Circ. Res. 103: 1280-1288. https://doi.org/10.1161/CIRCRESAHA.108.183863
  46. Liu W, Singh R, Choi CS, Lee HY, Keramati AR, Samuel VT, Lifton RP, Shulman GI, Mani A. 2012. Low density lipoprotein (LDL) receptor-related protein 6 (LRP6) regulates body fat and glucose homeostasis by modulating nutrient sensing pathways and mitochondrial energy expenditure. J. Biol. Chem. 287: 7213-7223. https://doi.org/10.1074/jbc.M111.286724
  47. Ma L, Zhong J, Zhao Z, Luo Z, Ma S, Sun J, He H, Zhu T, Liu D, Zhu Z. 2011. Activation of TRPV1 reduces vascular lipid accumulation and attenuates atherosclerosis. Cardiovasc. Res. 92: 504-513. https://doi.org/10.1093/cvr/cvr245
  48. Mani A, Radhakrishnan J, Wang HE, Nelson-Williams C, Carew KS, Mane S, Najmabadi H, Wu D. 2007. LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science 315: 1278-1282. https://doi.org/10.1126/science.1136370
  49. Mi K, Johnson GV. 2005. Role of the intracellular domains of LRP5 and LRP6 in activating the Wnt canonical pathway. J. Cell. Biochem. 95: 328-338. https://doi.org/10.1002/jcb.20400
  50. Moon JH, Kang SB, Park JS, Lee BW, Kang ES, Ahn CW, Lee HC, Cha BS. 2011. Up-regulation of hepatic low-density lipoprotein receptor-related protein 1: a possible novel mechanism of anti atherogenic activity of hydroxy methyl glutaryl-coenzyme A reductase inhibitor: Atorvastatin and hepatic LRP1 expression. Cell Metab. 60: 930-940.
  51. Narumi S, Numakura C, Shiihara T, Seiwa C, Nozaki Y, Yamagata T, Momoi MY, Watanabe Y, Yoshino M, Matsuishi T. 2010. Various types of LRP5 mutations in four patients with osteoporosis pseudoglioma syndrome: Identification of a 7.2?kb microdeletion using oligonucleotide tiling microarray. Am. J. Med. Genet. A. 152: 133-140.
  52. Niehrs C, Shen J. 2010. Regulation of Lrp6 phosphorylation. Cell. Mol. Life Sci. 67: 2551-2562. https://doi.org/10.1007/s00018-010-0329-3
  53. O'Brien KD, Kuusisto J, Reichenbach DD, Ferguson M, Giachelli C, Alpersand CE, Otto CM. 1995. Osteopontin is expressed in human aortic valvular lesions. Circulation 92: 2163-2168. https://doi.org/10.1161/01.CIR.92.8.2163
  54. Peng CH, Chang HC, Yang MY, Huang CN, Wang SJ, Wang CJ. 2013. Oat attenuate non-alcoholic fatty liver and obesity via inhibiting lipogenesis in high fat-fed rat. J. Funct. Food. 5: 53-61. https://doi.org/10.1016/j.jff.2012.08.003
  55. Poirier S, Mayer G, Benjannet S, Bergeron E, Marcinkiewicz J, Nassoury N, Mayer H, Nimpf J, Prat A, Seidah NG. 2008. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J. Biol. Chem. 283: 2363-2372. https://doi.org/10.1074/jbc.M708098200
  56. Rahman N, Jeon M, Kim YS. 2016. Delphinidin, a major anthocyanin, inhibits 3T3?L1 pre?adipocyte differentiation through activation of Wnt/${\beta}$?catenin signaling. BioFactors 42: 49-59.
  57. Rajamannan NM. 2011. The role of Lrp5/6 in cardiac valve disease: experimental hypercholesterolemia in the ApoE-/-/Lrp5-/- mice. J. Cell. Biochem. 112: 2987-2991. https://doi.org/10.1002/jcb.23221
  58. Rideout TC, Yuan Z, Bakovic M, Liu Q, Li RK, Mine Y, Fan MZ. 2007. Guar gum consumption increases hepatic nuclear SREBP2 and LDL receptor expression in pigs fed an atherogenic diet. J. Nutr. 137: 568-572. https://doi.org/10.1093/jn/137.3.568
  59. Rodriguez-Cantu LN, Gutierrez-Uribe JA, Arriola-Vucovich J, Diaz-De La Garza RI, Fahey JW, Serna-Saldivar SO. 2011. Broccoli (Brassica oleraceavar. italica) sprouts and extracts rich in glucosinolates and isothiocyanates affect cholesterol metabolism and genes involved in lipid homeostasis in hamsters. J. Agric. Food Chem. 59: 1095-1103. https://doi.org/10.1021/jf103513w
  60. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, DeSimone G, Ford ES. 2011. Heart disease and stroke statistics-2011 update a report from the American Heart Association. Circulation 123: e18-e209.
  61. Shimoda H, Tanaka J, Takahara Y, Takemoto K, Shan SJ, Su MH. 2009. The hypocholesterolemic effects of cistanche tubulosa extract, a Chinese traditional crude medicine, in mice. Chin. Med. 37: 1125-1138. https://doi.org/10.1142/S0192415X09007545
  62. Song YB, An YR, Kim SJ, Park HY, Jung JW, Kyung JS, Hwang SY, Kim YS. 2012. Lipid metabolic effect of Korean red ginseng extract in mice fed on a high?fat diet. J. Sci. Food Agric. 92: 388-396. https://doi.org/10.1002/jsfa.4589
  63. Srivastava R, Zhang J, Go GW, Narayanan A, Nottoli TP, Mani A. 2015. Impaired LRP6-TCF7L2 activity enhances smooth muscle cell plasticity and causes coronary artery disease. Cell Reports 13: 746-759. https://doi.org/10.1016/j.celrep.2015.09.028
  64. Takahashi S, Kawarabayasi Y, Nakai T, Sakai J, Yamamoto T. 1992. Rabbit very low density lipoprotein receptor: a low density lipoprotein receptor-like protein with distinct ligand specificity. Proc. Natl. Acad. Sci. USA 89: 9252-9256. https://doi.org/10.1073/pnas.89.19.9252
  65. Takahashi S, Sakai J, Fujino T, Hattori H, Zenimaru Y, Suzuki J, Miyamori I, Yamamoto TT. 2004. The very low-density lipoprotein (VLDL) receptor: characterization and functions as a peripheral lipoprotein receptor. J. Atheroscler. Thromb. 11: 200-208. https://doi.org/10.5551/jat.11.200
  66. Tao H, Aakula S, Abumrad NN, Hajri T. 2010. Peroxisome proliferator- activated receptor-${\gamma}$ regulates the expression and function of very-low-density lipoprotein receptor. Am. J. Physiol.-Endocrinol. Metab. 298: E68-E79. https://doi.org/10.1152/ajpendo.00367.2009
  67. Terrand J, Bruban V, Zhou L, Gong W, El Asmar Z, May P, Zurhove K, Haffner P, Philippe C, Woldt E. 2009. LRP1 controls intracellular cholesterol storage and fatty acid synthesis through modulation of Wnt signaling. J. Biol. Chem. 284: 381-388. https://doi.org/10.1074/jbc.M806538200
  68. Tomaszewski M, Charchar FJ, Barnes T, Gawron-Kiszka M, Sedkowska A, Podolecka E, Kowalczyk J, Rathbone W, Kalarus Z, Grzeszczak W. 2009. A common variant in low-density lipoprotein receptor-related protein 6 gene (LRP6) is associated With LDL-cholesterol. Arterioscler. Thromb. Vasc. Biol. 29: 1316-1321. https://doi.org/10.1161/ATVBAHA.109.185355
  69. Wang S, Song K, Srivastava R, Dong C, Go GW, Li N, Iwakiri Y, Mani A. 2015. Non alcoholic fatty liver disease induced by noncanonical Wnt and its rescue by Wnt3a. The FASEB Journal. 29: 3436-3445. https://doi.org/10.1096/fj.15-271171
  70. Wiklund O Dyer CA, Tsao BP, Curtiss LK. 1985. Stoichiometric binding of apolipoprotein B-specific monoclonal antibodies to low density lipoproteins. J. Biol. Chem. 260: 10956-10960.
  71. Willnow TE, Nykjaer A, Herz J. 1999. Lipoprotein receptors: new roles for ancient proteins. Nat. Cell Biol. 1: E157-E162. https://doi.org/10.1038/14109
  72. Xiao HB, Sun ZL, Zhang HB, Zhang DS. 2012. Berberine inhibits dyslipidemia in C57BL/6 mice with lipopolysaccharide induced inflammation. Pharmacol. Rep. 64: 889-895. https://doi.org/10.1016/S1734-1140(12)70883-6
  73. Xie ZQ, Liang G, Zhang L, Wang Q, Qu Y, Gao Y, Lin LB, Ye S, Zhangand J, Wang H. 2009. Molecular mechanisms underlying the cholesterol-lowering effect of Ginkgo biloba extract in hepatocytes: a comparative study with lovastatin. Acta Pharmacol. Sin. 30: 1262-1275. https://doi.org/10.1038/aps.2009.126
  74. Xu H, Wang J, Chang Y, Xu J, Wang Y, Long T, Xue C. 2014. Fucoidan from the sea cucumber acaudina molpadioides exhibits anti-adipogenic activity by modulating the Wnt/${\beta}$-catenin pathway and down-regulating the SREBP-1c expression. Food Funct. 5: 1547-1555. https://doi.org/10.1039/C3FO60716J
  75. Xu H, Wang J, Zhang X, Li Z, Wang Y, Xue C. 2015. Inhibitory effect of fucosylated chondroitin sulfate from the sea cucumber acaudina molpadioides on adipogenesis is dependent on Wnt/${\beta}$- catenin pathway. J. Biosci. Bioeng. 119: 85-91. https://doi.org/10.1016/j.jbiosc.2014.05.026
  76. Yagyu H, Lutz EP, Kako Y, Marks S, Hu Y, Choi SY, Bensadoun A, Goldberg IJ. 2002. Very low density lipoprotein (VLDL) receptor-deficient mice have reduced lipoprotein lipase activity possible causes of hypertriglyceridemia and reduced body mass with VLDL receptor deficiency. J. Biol. Chem. 277: 10037-10043. https://doi.org/10.1074/jbc.M109966200
  77. Ye ZJ, Go GW, Singh R, Liu W, Keramati AR, Mani A. 2012. LRP6 protein regulates low density lipoprotein (LDL) receptormediated LDL uptake. J. Biol. Chem. 287: 1335-1344. https://doi.org/10.1074/jbc.M111.295287
  78. Zhou L, Shi Y, Guo R, Liang M, Zhu X, Wang C. 2014. Digital gene-expression profiling analysis of the cholesterol-lowering effects of alfalfa saponin extract on laying hens. PLoS One 9: e985

피인용 문헌

  1. 제조방법을 달리한 경옥고의 고콜레스테롤혈증 흰쥐에 미치는 효능 비교 연구 vol.32, pp.3, 2017, https://doi.org/10.6116/kjh.2017.32.3.9