• 제목/요약/키워드: intracellular transport

검색결과 149건 처리시간 0.043초

A Novel Kinesin-like Protein, Surhe is Associated with Dorsalization in the Zebrafish Embryos

  • Kim, Eun-Joong;Ro, Hyun-Ju;Huh, Tae-Lin;Lee, Chang-Joong;Choi, Jin-Hee;Rhee, Myung-Chull
    • Animal cells and systems
    • /
    • 제12권4호
    • /
    • pp.219-230
    • /
    • 2008
  • We are reporting the expression patterns and possible biological functions of a novel Kinesin-like protein, Surhe, in the zebrafish. Homology studies of derived amino acid sequences suggest that Surhe has an amino-terminal kinesin motor domain that is similar to that of the emerging MKLP-1 subfamily [Kim and Endow, 2000] and two coiledcoil domains in a central region. Cellular localization studies in mammalian cells revealed that Surhe protein is located in cytoplasm, suggesting that Surhe may be involved in the intracellular transport. During the developmental process, surhe transcripts are highly expressed in early embryonic stages. Overexpression of the dominant negative form of Surhe significantly down-regulates the dorsalization markers, such as goosecoid, bozozok, and chordin. Taken together, we postulate that Surhe may be involved in dorsalization process as a motor molecule.

The Synergic Anti-inflammatory Impact of Gleditsia sinensis Lam. and Lactobacillus brevis KY21 on Intestinal Epithelial Cells in a DSS-induced Colitis Model

  • Kim, Younghoon;Koh, Ji Hoon;Ahn, Young Jun;Oh, Sejong;Kim, Sea Hun
    • 한국축산식품학회지
    • /
    • 제35권5호
    • /
    • pp.604-610
    • /
    • 2015
  • We investigated the synergic anti-inflammatory activity of Gleditsia sinensis Lam. (GS) extract and Lactobacillus brevis KY21 both in vitro and in vivo. Western blot analysis and immunostaining showed that AKT phosphorylation that increased by the exposure of LPS were significantly decreased by the presence of either GS extract or L. brevis KY21. In addition, p65 intracellular transport was critically inhibited by GS extract and L. brevis KY21. We further studied these effects using an in vivo dextran sulfate sodium (DSS)-induced mouse model. Body weight, food intake, and clinical scores were dramatically decreased after treatment with DSS, whereas these effects were palliated by the addition of GS extract and L. brevis KY21. Importantly, transcription of genes encoding pro-inflammatory cytokines including IL-1β, TNF-α, and IFN-γ in mesenteric lymph nodes (MLN) and the spleen were increased by DSS treatment, whereas they were inhibited by the presence of GS extract and L. brevis KY21.

Tmp21, a novel MHC-I interacting protein, preferentially binds to β2-microglobulin-free MHC-I heavy chains

  • Jun, Young-Soo;Ahn, Kwang-Seog
    • BMB Reports
    • /
    • 제44권6호
    • /
    • pp.369-374
    • /
    • 2011
  • MHC-I molecules play a critical role in immune surveillance against viruses by presenting peptides to cytotoxic T lymphocytes. Although the mechanisms by which MHC-I molecules assemble and acquire peptides in the ER are well characterized, how MHC-I molecules traffic to the cell surface remains poorly understood. To identify novel proteins that regulate the intracellular transport of MHC-I molecules, MHC-I-interacting proteins were isolated by affinity purification, and their identity was determined by mass spectrometry. Among the identified MHC-I-associated proteins was Tmp21, the human ortholog of yeast Emp24p, which mediates the ER-Golgi trafficking of a subset of proteins. Here, we show that Tmp21 binds to human classical and non-classical MHC-I molecules. The Tmp21-MHC-I complex lacks ${\beta}_2$-microglobulin, and the number of the complexes is increased when free MHC-I heavy chains are more abundant. Taken together, these results suggest that Tmp21 is a novel protein that preferentially binds to ${\beta}_2$-microglobulin-free MHC-I heavy chains.

Adenosine and Purine Nucleosides Prevent the Disruption of Mitochondrial Transmembrane Potential by Peroxynitrite in Rat Primary Astrocytes

  • Choi, Ji-Woong;Yoo, Byung-Kwon;Ryu, Mi-Kyoung;Choi, Min-Sik;Park, Gyu-Hwan;Ko, Kwang-Ho
    • Archives of Pharmacal Research
    • /
    • 제28권7호
    • /
    • pp.810-815
    • /
    • 2005
  • Previously, we have shown that astrocytes deprived of glucose became highly vulnerable to peroxynitrite, and adenosine and its metabolites attenuated the gliotoxicity via the preservation of cellular ATP level. Here, we found that adenosine and related metabolites prevented the disruption of mitochondrial transmembrane potential (MTP) in glucose-deprived rat primary astrocytes exposed to 3-morpholinosydnonimine (SIN-1), a peroxynitrite releasing agent. Exposure to glucose deprivation and SIN-1(2h) significantly disrupted MTP in astrocytes, and adenosine prevented it in dose-dependent manner with an $EC_{50}\;of\;5.08{\mu}M$. Adenosine also partially prevented the cell death by myxothiazol, a well-known inhibitor of mitochondrial respiration. Blockade of adenosine deamination or intracellular transport with erythro-9-(-hydroxy-3-nonyl)adenosine (EHNA) or S-(4-nitrobenzyl)-6-thioinosine (NBTI), respectively, completely reversed the protective effect of adenosine. Other purine nucleos(t)ides including inosine, guanosine, ATP, ADP, AMP, ITP, and GTP also showed similar protective effects. This study indicates that adenosine and related purine nucleos(t)ides may protect astrocytes from peroxynitrite-induced mitochondrial dysfunction.

Agglutination Activity of Fasciola gigantica DM9-1, a Mannose-Binding Lectin

  • Phadungsil, Wansika;Grams, Rudi
    • Parasites, Hosts and Diseases
    • /
    • 제59권2호
    • /
    • pp.173-178
    • /
    • 2021
  • The DM9 domain is a protein unit of 60-75 amino acids that has been first detected in the fruit fly Drosophila as a repeated motif of unknown function. Recent research on proteins carrying DM9 domains in the mosquito Anopheles gambiae and the oyster Crassostrea gigas indicated an association with the uptake of microbial organisms. Likewise, in the trematode Fasciola gigantica DM9-1 showed intracellular relocalization following microbial, heat and drug stress. In the present research, we show that FgDM9-1 is a lectin with a novel mannose-binding site that has been recently described for the protein CGL1 of Crassostrea gigas. This property allowed FgDM9-1 to agglutinate gram-positive and -negative bacteria with appropriate cell surface glycosylation patterns. Furthermore, FgDM9-1 caused hemagglutination across all ABO blood group phenotypes. It is speculated that the parenchymal located FgDM9-1 has a role in cellular processes that involve the transport of mannose-carrying molecules in the parenchymal cells of the parasite.

Intron retention decreases METTL3 expression by inhibiting mRNA export to the cytoplasm

  • Sangsoo Lee;Haesoo Jung;Sunkyung Choi;Namjoon Cho;Eun-Mi Kim;Kee Kwang Kim
    • BMB Reports
    • /
    • 제56권9호
    • /
    • pp.514-519
    • /
    • 2023
  • Methyltransferase-like 3 (METTL3), a key component of the m6A methyltransferase complex, regulates the splicing, nuclear transport, stability, and translation of its target genes. However, the mechanism underlying the regulation of METTL3 expression by alternative splicing (AS) remains unknown. We analyzed the expression pattern of METTL3 after AS in human tissues and confirmed the expression of an isoform retaining introns 8 and 9 (METTL3-IR). We confirmed the different intracellular localizations of METTL3-IR and METTL3 proteins using immunofluorescence microscopy. Furthermore, the endogenous expression of METTL3-IR at the protein level was different from that at the mRNA level. We found that 3'-UTR generation by intron retention (IR) inhibited the export of METTL3-IR mRNA to the cytoplasm, which in turn suppressed protein expression. To the best of our knowledge, this is the first study to confirm the regulation of METTL3 gene expression by AS, providing evidence that the suppression of METTL3 protein expression by IR is an integral part of the mechanism by which 3'-UTR generation regulates protein expression via inhibition of RNA export to the cytoplasm.

Aspartate-glutamate carrier 2 (citrin): a role in glucose and amino acid metabolism in the liver

  • Milan Holecek
    • BMB Reports
    • /
    • 제56권7호
    • /
    • pp.385-391
    • /
    • 2023
  • Aspartate-glutamate carrier 2 (AGC2, citrin) is a mitochondrial carrier expressed in the liver that transports aspartate from mitochondria into the cytosol in exchange for glutamate. The AGC2 is the main component of the malate-aspartate shuttle (MAS) that ensures indirect transport of NADH produced in the cytosol during glycolysis, lactate oxidation to pyruvate, and ethanol oxidation to acetaldehyde into mitochondria. Through MAS, AGC2 is necessary to maintain intracellular redox balance, mitochondrial respiration, and ATP synthesis. Through elevated cytosolic Ca2+ level, the AGC2 is stimulated by catecholamines and glucagon during starvation, exercise, and muscle wasting disorders. In these conditions, AGC2 increases aspartate input to the urea cycle, where aspartate is a source of one of two nitrogen atoms in the urea molecule (the other is ammonia), and a substrate for the synthesis of fumarate that is gradually converted to oxaloacetate, the starting substrate for gluconeogenesis. Furthermore, aspartate is a substrate for the synthesis of asparagine, nucleotides, and proteins. It is concluded that AGC2 plays a fundamental role in the compartmentalization of aspartate and glutamate metabolism and linkage of the reactions of MAS, glycolysis, gluconeogenesis, amino acid catabolism, urea cycle, protein synthesis, and cell proliferation. Targeting of AGC genes may represent a new therapeutic strategy to fight cancer.

Calcium수송기전에 미치는 Carbachol의 영향 (Calcium Movement in Carbachol-stimulated Cell-line)

  • 이종화
    • 대한약리학회지
    • /
    • 제31권3호
    • /
    • pp.355-363
    • /
    • 1995
  • Calcium수송에 대한 기전을 추구하기위하여, carbachol을 사용하여 ml muscarinic receptor-transfected RBL-2H3 cell-line에서 다음과 같은 실험결과를 얻었기에 이에 보고한다. 1) Carbachol의 투여로 이들 cell-line에서 $Ca^{2+}$ influx가 농도에 따라 증가하였고, hexosaminidase 분비양도 의의있게 증가하였다. 2) Atropine 투여로 Carbachol의 상승작용이 의의있게 억제되었다. 3) 수종의 금속양이온을 투여하여 carbachol의 $Ca^{2+}$수송에 대한 영향을 관찰한 바, 이들 금속이온들은 $Ca^{2+}$의 influx를 의의있게 억제하였다. 4) PMA(20 nM) 투여로 carbachol의 hexosaminidase의 분비는 억제되지 못했지만 $Ca^{2+}$ influx는 억제되었다. 5) PTx $(0.2\;{\mu}g/ml)$ 투여로 carbachol의 hexosaminidase 분비가 의의있게 억제되었다. 위의 결과로 미루어 보아, 이 세포의 muscarinic receptor가 calcium channel을 통한 calcium수송에 매우 중요한 영향을 나타내는데, 이들 calcium ion channel은 적어도 두 종류가 존재하며, 하나는G-protein-dependent calcium channel에 의하며, 다른 하나는 G-protein-independent calcium channel에 대한 작용에 의한 것으로 생각된다. 또한 이 calcium channel들은 2가 또는 3가의 다른 금속 ion들에 의하여 calcium수송이 억제된다.

  • PDF

사람 두경부 편평세포암종 HEp2 세포에서 BCH에 의한 세포성장 억제기전 (Mechanism of Growth Inhibition by BCH in HEp2 Human Head and Neck Squamous Cell Carcinoma)

  • 최봉규;정규용;조선호;김춘성;김도경
    • 한국식품영양과학회지
    • /
    • 제37권5호
    • /
    • pp.555-560
    • /
    • 2008
  • 사람 두경부 편평세포암종 HEp2 세포를 이용하여 아미노산 수송계 L 억제제인 BCH의 암세포 성장억제에 미치는 효과와 세포성장 억제기전을 밝히기 위해 HEp2 세포에서 uptake 실험, MTT 분석, DNA fragmentation 분석 및 immunoblotting 등을 시행하여 다음과 같은 결과를 얻었다. 아미노산 수송계 L 억제제인 BCH는 L-leucine uptake를 농도 의존적으로 억제하였으며, 그 $IC_{50}$$ 51.2{\pm}3.8{\mu}M$로 산출되었다. BCH는 HEp2 세포의 성장을 시간과 농도에 의존적으로 억제하였다. BCH를 처리한 실험군에서 DNA fragmentation 현상은 볼 수 없었다. BCH를 처리한 실험군에서 procaspase-3과 procaspase-7의 proteolytic cleavage 현상은 볼 수 없었다. 본 연구의 결과로서 사람 두경부 편평세포 암종 HEp2 세포에서 아미노산 수송계 L 억제제 BCH는 LAT1 활성을 억제하여 세포성장에 필수적인 L-leucine 등 중성아미노산의 세포 내 고갈을 유도함으로써 HEp2 세포의 성장억제를 유도할 가능성이 있는 것으로 사료된다.

Kinesin Light Chain (KLC)의 Tetratricopeptide Repeat (TPR) 도메인을 통한 Scaffold 단백질 WAVE1과 Kinesin 1의 결합 (The Scaffolding Protein WAVE1 Associates with Kinesin 1 through the Tetratricopeptide Repeat (TPR) Domain of the Kinesin Light Chain (KLC))

  • 장원희;정영주;엄상화;석대현
    • 생명과학회지
    • /
    • 제26권8호
    • /
    • pp.963-969
    • /
    • 2016
  • Kinesin superfamily proteins (KIFs)은 세포 내 소기관이나 단백질복합체를 미세소관을 따라 운반하는 모터단백질이다. Kinesin 1은 경쇄단위체(light chain subunit)를 통하여 결합함으로써 세포 내 소기관, 신경소포, 신경전달물질수용체, 신호전달단백질, mRNA 등 다양한 운반체를 운반하는 KIFs의 한 종류이다. Kinesin light chains (KLCs)은 모터기능이 없는 단위체로서 kinesin heavy chains (KHCs) 이량체와 결합하여 kinesin 1을 구성한다. KLCs은 여러 단백질과 결합하지만 아직 결합단백질이 충분히 밝혀지지 않았다. 본 연구에서 KLC1의 tetratricopeptide repeat (TPR) 영역과 결합하는 단백질을 분리하기 위하여 효모 two-hybrid 탐색을 수행한 결과 Wiskott-Aldrich syndrome의 원인단백질이며 액틴 세포골격 조절단백질인 WASP/WAVE family의 하나인 WAVE1을 분리하였다. WAVE1은 KLC1의 TPR 영역을 포함한 부위와 결합하지만 KHCs인 KIF5A, KIF5B, KIF5C와는 결합하지 않았다. 또한 KLC1은 WAVE1의 C-말단에 존재하는 verprolin/cofilin/acidic (VCA) 도메인과 결합하였으며, 다른 WAVE isoform인 WAVE2와 WAVE3과도 결합하였다. HEK-293T 세포에 WAVE1과 KLC1을 동시에 발현시켰을 때 두 단백질이 세포 내에서 같은 부위에 존재하며, WAVE1을 면역침강한 결과 KLC1뿐만 아니라 KIF5B가 같이 침강함을 확인하였다. 이러한 결과들은 kinesin 1이 WAVE 단백질복합체 혹은 WAVE로 덮여있는 운반체를 운반함을 시사한다.