• Title/Summary/Keyword: intracellular calcium concentration

Search Result 208, Processing Time 0.021 seconds

Inhibition of Store-Operated Calcium Entry Protects Endothelial Progenitor Cells from H2O2-Induced Apoptosis

  • Wang, Yan-Wei;Zhang, Ji-Hang;Yu, Yang;Yu, Jie;Huang, Lan
    • Biomolecules & Therapeutics
    • /
    • v.24 no.4
    • /
    • pp.371-379
    • /
    • 2016
  • Store-operated calcium entry (SOCE), a major mode of extracellular calcium entry, plays roles in a variety of cell activities. Accumulating evidence indicates that the intracellular calcium ion concentration and calcium signaling are critical for the responses induced by oxidative stress. The present study was designed to investigate the potential effect of SOCE inhibition on $H_2O_2$-induced apoptosis in endothelial progenitor cells (EPCs), which are the predominant cells involved in endothelial repair. The results showed that $H_2O_2$-induced EPC apoptosis was reversed by SOCE inhibition induced either using the SOCE antagonist ML-9 or via silencing of stromal interaction molecule 1 (STIM1), a component of SOCE. Furthermore, SOCE inhibition repressed the increases in intracellular reactive oxygen species (ROS) levels and endoplasmic reticulum (ER) stress and ameliorated the mitochondrial dysfunction caused by $H_2O_2$. Our findings provide evidence that SOCE inhibition exerts a protective effect on EPCs in response to oxidative stress induced by $H_2O_2$ and may serve as a potential therapeutic strategy against vascular endothelial injury.

Studies on the Regulation of Calcium Activity in Myocardial Contraction (심근 수축에 있어서 Calcium작용의 조절에 관한 연구)

  • Ko, Chang-Mann;Hong, Sa-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.113-120
    • /
    • 1990
  • Influences of trigger calcium on myocardial contraction from several sources were investigated on the frequency reduction-induced changes of contraction in rat left atria driven by electrical field stimulation. Rat atria elicited characteristic three phase-changes according to frequency reduction: the first rapid rise in twitch tension, the second transient fast decrease in tension and the third maintenance of twitch tension at about 200% of resting tension during high frequency. Caffeine treatment enormously suppressed the frequency reduction-induced twitch tension increase. The atrial contraction during high frequency vanished after verapamil treatment. But, during low frequency, atrial contraction revived in the presence of verapamil. Ouabain treatment and sodium depletion in superfusing solution abolished the characteristic second phase with slow frequency. These results suggest that slow calcium channel is an indispensable calcium entry route and calcium release from sarcoplasmic reticulum is an major source for trigger calcium in cardiac contraction. And sodium-calcium exchange has a modulatory roles in the regualtion of trigger calcium according to the changes of intracellular sodium concentration.

  • PDF

Effects of Protein Kinases on Phospholipase C Activation and Intracellular $Ca^{2+}$ Mobilization Induced by Endothelin-1 (Endothelin-1에 의한 phospholipase C 활성화와 세포내 $Ca^{2+}$ 이동에 미치는 protein kinase들의 효과)

  • 조중형;김현준;이윤혜;박진형;장용운;이승준;이준한;윤정이;김창종
    • YAKHAK HOEJI
    • /
    • v.44 no.2
    • /
    • pp.162-168
    • /
    • 2000
  • To investigate the effects of protein kinases on endothelin-1-induced phospholipase C activation and $Ca^{2+}$ mobilization in Rat-2 fibroblast, we measured the formation of inositol phosphates and intracellular $Ca^{2+}$ concentration with [$^3$H]inositol and Fura-2/AM, respectively. Endothelin-1 dose-dependently activated phospholipase C and increased intracellular $Ca^{2+}$ concentration. Protein kinase C activator PMA, significantly inhibited both phospholipase C activity and $Ca^{2+}$ mobilization induced by endothelin-1. Tyrosine kinase inhibitor, genistein, inhibited both. On the other hand, cyclic nucleotide (cAMP and cGMP) did not have any influence on the signaling pathway of phospholipase C-Ca$^{2+}$ mobilization induced by endothelin-1. These results suggest that protein kinase C and tyrosine kinase counteract on the signaling pathway of phospholipase C-Ca$^{2+}$ mobilization induced by endothelin-1 in Rat-2 fibroblast. fibroblast.

  • PDF

Effect of Propranolol on the $Ca^{++}$-regulation of Cardiac Sarcoplasmic Reticulum and Mitochondria (Propranolol이 심근 sarcoplasmic reticulum 및 mitochondria 의 $Ca^{++}$ 조절작용에 미치는 효과에 관한 연구)

  • 최수승
    • Journal of Chest Surgery
    • /
    • v.19 no.2
    • /
    • pp.197-208
    • /
    • 1986
  • Propranolol is one of clinically useful antiarrhythmic agents and electrophysiologically classified as group II. And the negative inotropic effect which is not related to adrenolytic effect has been demonstrated with high concentration of propranolol. On the other hand, it has been well known that the calcium plays a central role in excitation-contraction coupling process of myocardium and also in electrophysiological changes of cell membrane. Author studies the effect of propranolol on calcium uptake and release in sarcoplasmic reticulum and mitochondria prepared from porcine myocardium to investigate the mechanism of action of propranolol on myocardium. The results are summarized as follow: 1] The maximum Ca++-uptake of sarcoplasmic reticulum is inhibited by propranolol in a dose dependent manner. 2] The release of calcium from sarcoplasmic reticulum is not affected by propranolol but with higher than 1x10-3 M of propranolol, rate of calcium release from sarcoplasmic reticulum is decreased. 3] Propranolol inhibits the maximum uptake and uptake rate of calcium in mitochondria non-competitively. [Ki = 6.21 x 10-4 M] 4] The rate of Na+ induced calcium release from mitochondrion shows a function of [Na+]2 and is inhibited by propranolol with the concentration significantly lower than that affect the calcium uptake in sarcoplasmic reticulum and in mitochondria [Ki = 2.91 x 10-5 M]. These results suggest that propranolol affects the intracellular calcium homeostasis which may considered to be one of the mechanism of action of propranolol on myocardium.

  • PDF

Calcium-related genes associated with intracellular calcification of Emiliania huxleyi (Haptophyta) CCMP 371

  • Nam, Onyou;Shiraiwa, Yoshihiro;Jin, EonSeon
    • ALGAE
    • /
    • v.33 no.2
    • /
    • pp.181-189
    • /
    • 2018
  • Emiliania huxleyi (a haptophyte) is the most abundant coccolithophore species that produces delicate calcite scales called coccoliths. In this study, we identified several candidate genes associated with coccolith production by comparing the transcriptomes of the calcifying (CCMP 371) and non-calcifying (CCMP 2090) strains of E. huxleyi. Among the candidates, genes highly expressed in CCMP 371 were identified. To confirm whether these genes are associated with calcification, we modulated coccolith production in CCMP 371 by culturing it at different calcium concentrations. At an ambient (10 mM) concentration of calcium in the growth medium, CCMP 371 sustained its calcifying ability. However, at a low (0.1 mM) concentration or absence of calcium, there was no calcite formation, demonstrating that calcium-limiting conditions negatively affect calcification. We also evaluated the expression patterns of the putative genes in cells grown at different calcium concentrations by quantitative reverse transcription polymerase chain reaction. In addition, we showed that the growth rate of cells cultured under calcium-limiting conditions does not differ from that under ambient conditions. Further studies are required to investigate the roles of the putative calcification-associated genes at the molecular level.

Nootkatol prevents ultraviolet radiation-induced photoaging via ORAI1 and TRPV1 inhibition in melanocytes and keratinocytes

  • Woo, Joo Han;Nam, Da Yeong;Kim, Hyun Jong;Hong, Phan Thi Lam;Kim, Woo Kyung;Nam, Joo Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.87-94
    • /
    • 2021
  • Skin photoaging occurs due to chronic exposure to solar ultraviolet radiation (UV), the main factor contributing to extrinsic skin aging. Clinical signs of photoaging include the formation of deep, coarse skin wrinkles and hyperpigmentation. Although melanogenesis and skin wrinkling occur in different skin cells and have different underlying mechanisms, their initiation involves intracellular calcium signaling via calcium ion channels. The ORAI1 channel initiates melanogenesis in melanocytes, and the TRPV1 channel initiates MMP-1 production in keratinocytes in response to UV stimulation. We aimed to develop a drug that may simultaneously inhibit ORAI1 and TRPV1 activity to help prevent photoaging. We synthesized nootkatol, a chemical derivative of valencene. TRPV1 and ORAI1 activities were measured using the whole-cell patch-clamp technique. Intracellular calcium concentration [Ca2+]i was measured using calcium-sensitive fluorescent dye (Fura-2 AM). UV-induced melanin formation and MMP-1 production were quantified in B16F10 melanoma cells and HaCaT cells, respectively. Our results indicate that nootkatol (90 μM) reduced TRPV1 current by 94% ± 2% at -60 mV and ORAI1 current by 97% ± 1% at -120 mV. Intracellular calcium signaling was significantly inhibited by nootkatol in response to ORAI1 activation in human primary melanocytes (51.6% ± 0.98% at 100 μM). Additionally, UV-induced melanin synthesis was reduced by 76.38% ± 5.90% in B16F10 melanoma cells, and UV-induced MMP-1 production was reduced by 59.33% ± 1.49% in HaCaT cells. In conclusion, nootkatol inhibits both TRPV1 and ORAI1 to prevent photoaging, and targeting ion channels may be a promising strategy for preventing photoaging.

Adenosine Receptors Mediated Intracellular Calcium in Cumulus Cells Involved in the Maintenance of First Meiotic Arrest

  • Hwang, Heekyung;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.17 no.2
    • /
    • pp.141-147
    • /
    • 2013
  • Keeping the intact germinal vesicle (GV) is essential for maintaining the capacity of mammals including human. It is maintained by very complex procedures along with folliculogenesis and is a critical step for getting competent oocyte. So far, a few mechanisms involved in folliculogenesis are known but GV arrest mechanisms are largely unrevealed. Cyclic AMP, a adenosine derived substance, have been used as inhibitor of germinal vesicle breakdown as a putative oocyte maturation inhibitor. In this study, we examined the potency of adenosine as GV maintainer and a possible signaling mediator for that. A1, A2b, and A3 were detected in cumulus cells of cumulus enclosed-oocyte (CEO). Intact of germinal vesicle was not kept like in follicle but the spontaneous maturation was inhibited by exogenous adenosine. It is inhibited with concentration dependent manners. Intracellular calcium level of cumulus was extensively increased after adenosine treatment. Based on these results it is suggested that one of the pathway for GV arrest by adenosine and its receptors is calcium mediated signaling pathway in CEO.

Regulation of Cumulus Expansion of Porcine Cumulus-Oocyte Complexes in vitro: Involvement of cAMP and Calcium (한국인에 대한 지문과 장문의 정량적 분석)

  • 황긍연
    • The Korean Journal of Zoology
    • /
    • v.30 no.2
    • /
    • pp.117-139
    • /
    • 1987
  • The present experiments were carried out to investigate the mode of cAMP regulation of cumulus expansion in pig. Intracellular level of cAMP in the cumulus cells was modulated by culturing porcine cumulus oocyte complexes (COC's) with forskolin, an adenylate cyclase stimulator and 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor. The role of calcium in the hormone induced cumulus expansion process was also studied. Forskolin in the medium stimulated cumulus expansion from the concentration of 0.01 $\mu$M and induced full expansion at l-10 $\mu$M In contrast, IBMX in the medium (20-180 $\mu$M) failed to induce the expansion. Verapamil, a calcium ion transport blocker, suppressed follicle stimulating hormone(FSH)-induced cumulus expansion in a dose dependent fashion (0.002-0. 2 mM) when the COC's were exposed to the drugs during culture period (32 hr). But verapamil did not interfere with the triggering action of FSH during early four hours of culture period. The data presented here showed that adenylate cyclase in the porcine cumulus cells may play a key role in the regulation of the intracellular cAMP level and calcium ion may be involved in the later period of cumulus expansion process.

  • PDF

Identification of Lys49-PLA2 from crude venom of Crotalus atrox as a human neutrophil-calcium modulating protein

  • Sultan, Md. Tipu;Li, Hong-Mei;Lee, Yong Zu;Lim, Soon Sung;Song, Dong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.2
    • /
    • pp.177-183
    • /
    • 2016
  • We fortuitously observed a human neutrophil intracellular free-calcium concentration ($[Ca^{2+}]_i$) increasing activity in the commercially available phosphodiesterase I (PDE I), which is actually dried crude venom of Crotalus atrox. As this activity was not observed with another commercially available pure PDE I, we tried to find out the causative molecule(s) present in 'crude' PDE, and identified Lys49-phospholipase A2 (Lys49-PLA2 or K49-PLA2), a catalytically inactive protein which belongs to the phospholipase A2 family, by activity-driven three HPLC (reverse phase, size exclusion, reverse phase) steps followed by SDS-PAGE and LC-MS/MS. K49-PLA2 induced $Ca^{2+}$ influx in human neutrophils without any cytotoxic effect. Two calcium channel inhibitors, 2-aminoetoxydiphenyl borate (2-APB) ($30{\mu}M$) and SKF-96365 ($20{\mu}M$) significantly inhibited K49-PLA2-induced $[Ca^{2+}]_i$ increase. These results suggest that K49-PLA2 modulates $[Ca^{2+}]_i$ in human neutrophils via 2-APB- and SKF-96365-sensitive calcium channels without causing membrane disruption.

Multiple Actions of Dimethylsphingosine in 1321N1 Astrocytes

  • Lee, Yun-Kyung;Kim, Hyo-Lim;Kim, Yu-Lee;Im, Dong-Soon
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.11-16
    • /
    • 2007
  • N,N-dimethyl-D-erythro-sphingosine (DMS) is an N-methyl derivative of sphingosine and an inhibitor of protein kinase C (PKC) and sphingosine kinase (SK). In the present study, we examined the effects of DMS on intracellular $Ca^{2+}$ concentration, pH, and glutamate uptake in human 1321N1 astrocytes. DMS increased intracellular $Ca^{2+}$ concentration and cytosolic pH in a concentration-dependent manner. Pretreatment of the cells with the $G_{i/o}$ protein inhibitor PTX and the PLC inhibitor U73122 had no obvious effect. However, removal of extracellular $Ca^{2+}$ with the $Ca^{2+}$ chelator EGTA or depletion of intracellular $Ca^{2+}$ stores with thapsigargin impeded the DMS-induced increase of intracellular $Ca^{2+}$ concentration. Pretreatment of cells with $NH_4Cl$ or monensin reduced the DMS-induced $Ca^{2+}$ increase. However, inhibition of the DMS-induced $Ca^{2+}$ increase with BAPTA did not influence the DMS-induced pH increase. DMS also inhibited glutamate uptake by the 1321N1 astrocytes in a concentration-dependent manner. It also increased intracellular $Ca^{2+}$ and pH in PC12 neuronal cells. Our observations on the effects of DMS on 1321N1 astrocytes and PC12 neuronal cells point to a physiological role of DMS in the brain.