• Title/Summary/Keyword: intracellular calcium

Search Result 466, Processing Time 0.028 seconds

Studies on the Regulation of Calcium Activity in Myocardial Contraction (심근 수축에 있어서 Calcium작용의 조절에 관한 연구)

  • Ko, Chang-Mann;Hong, Sa-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.113-120
    • /
    • 1990
  • Influences of trigger calcium on myocardial contraction from several sources were investigated on the frequency reduction-induced changes of contraction in rat left atria driven by electrical field stimulation. Rat atria elicited characteristic three phase-changes according to frequency reduction: the first rapid rise in twitch tension, the second transient fast decrease in tension and the third maintenance of twitch tension at about 200% of resting tension during high frequency. Caffeine treatment enormously suppressed the frequency reduction-induced twitch tension increase. The atrial contraction during high frequency vanished after verapamil treatment. But, during low frequency, atrial contraction revived in the presence of verapamil. Ouabain treatment and sodium depletion in superfusing solution abolished the characteristic second phase with slow frequency. These results suggest that slow calcium channel is an indispensable calcium entry route and calcium release from sarcoplasmic reticulum is an major source for trigger calcium in cardiac contraction. And sodium-calcium exchange has a modulatory roles in the regualtion of trigger calcium according to the changes of intracellular sodium concentration.

  • PDF

An Increased Intracellular Calcium Ion Concentration in Response to Dimethyl Sulfoxide Correlates with Enhanced Expression of Recombinant Human Cyclooxygenase 1 in Stably Transfected Drosophila melanogaster S2 Cells (Dimethyl sulfoxide에 의한 세포내 칼슘이온 농도 증가가 안정적으로 형질 전환된 초파리 S2 세포에서 재조합 사람 cyclooxygenase 1의 발현에 미치는 영향)

  • Chang, Kyung Hwa;Park, Jong-Hwa;Kim, Do Hyung;Chung, Ha Young;HwangBo, Jeon;Lee, Hyun Ho;Lee, Hee-Young;Shon, Dong-Hwa;Kim, Wonyong;Chung, In Sik
    • KSBB Journal
    • /
    • v.27 no.5
    • /
    • pp.313-318
    • /
    • 2012
  • Dimethyl sulfoxide (DMSO) increased the intracellular calcium ion concentration in stably transfected Drosophila melanogaster S2 cells expressing recombinant cyclooxygenase 1 (COX-1). DMSO did not increase the Drosophila NOS (dNOS) transcript level in calcium chelator-treated cells. Expression of recombinant COX-1 due to DMSO was diminished in cells treated with calcium chelators or channel blockers. Our results indicate that an increased intracellular calcium ion concentration due to DMSO is associated with up-regulation of the dNOS gene, leading to enhanced expression of COX-1.

Calcium Signaling in Salivary Secretion

  • Kim, Jin Man;Lee, Sang-Woo;Park, Kyungpyo
    • Journal of Korean Dental Science
    • /
    • v.10 no.2
    • /
    • pp.45-52
    • /
    • 2017
  • Calcium has versatile roles in diverse physiological functions. Among these functions, intracellular $Ca^{2+}$ plays a key role during the secretion of salivary glands. In this review, we introduce the diverse cellular components involved in the saliva secretion and related dynamic intracellular $Ca^{2+}$ signals. Calcium acts as a critical second messenger for channel activation, protein translocation, and volume regulation, which are essential events for achieving the salivary secretion. In the secretory process, $Ca^{2+}$ activates $K^+$ and $Cl^-$ channels to transport water and electrolyte constituting whole saliva. We also focus on the $Ca^{2+}$ signals from intracellular stores with discussion about detailed molecular mechanism underlying the generation of characteristic $Ca^{2+}$ patterns. In particular, inositol triphosphate signal is a main trigger for inducing $Ca^{2+}$ signals required for the salivary gland functions. The biphasic response of inositol triphosphate receptor and $Ca^{2+}$ pumps generate a self-limiting pattern of $Ca^{2+}$ efflux, resulting in $Ca^{2+}$ oscillations. The regenerative $Ca^{2+}$ oscillations have been detected in salivary gland cells, but the exact mechanism and function of the signals need to be elucidated. In future, we expect that further investigations will be performed toward better understanding of the spatiotemporal role of $Ca^{2+}$ signals in regulating salivary secretion.

Role of Intracellular Calcium in Clotrimazole-Induced Alteration of Cell Cycle Inhibitors, p53 and p27, in HT29 Human Colon Adenocarcinoma Cells

  • Thapa, Dinesh;Kwon, Jun-Bum;Kim, Jung-Ae
    • Biomolecules & Therapeutics
    • /
    • v.16 no.1
    • /
    • pp.21-27
    • /
    • 2008
  • Clotrimazole (CLT), a potent antifungal drug, is known to inhibit tumor cell proliferation. In the present study, we examined the role of intracellular $Ca^{2+}$ in CLT-induced cell cycle arrest of colon adenocarcinoma HT29 cells. CLT inhibited growth of HT29 cells in a concentration-dependent manner, which was associated with inhibition of cell cycle progression at the G(1)-S phase transition and an increase in the expression of cell cycle inhibitor proteins p27 and p53. CLT also suppressed the $Ca^{2+}$ overload by A23187, a calcium ionophore, suggesting its role in modulation of intracellular $Ca^{2+}$ concentration in HT29 cells. The simultaneous application of CLT and A23187 with addition of $CaCl_2$ (1mM) to the medium significantly reversed CLT-induced p27 and p53 protein level increase and growth suppression. Our results suggest that CLT induces cell cycle arrest of colon adenocarcinoma HT29 cells via induction of p27 and p53, which may, at least in part, be mediated by alteration of intracellular $Ca^{2+}$ level.

Inhibitory Effect of Rubus Coreanus on Compound 48/80- or Anti-DNP IgE-Induced Mast Cell Activation (Compound 48/80과 anti-DNP IgE로 유도되는 비만세포 활성화에 대한 복분자의 억제효과)

  • Li, Guang Zhao;Chai, Ok Hee;Song, Chang Ho
    • IMMUNE NETWORK
    • /
    • v.4 no.2
    • /
    • pp.100-107
    • /
    • 2004
  • Background: The fruit of Rubus coreanus (RC), a perennial herb, has been cultivated for a long time as a popular vegetable. The anti-allergy mechanism of RC is unknown. The purpose of this study is to investigate the inhibitory effect of RC on compound 48/80- or anti-DNP IgE-induced mast cell activation. Methods: For this, influences of RC on the compound 48/80-induced degranulation, histamine release, calcium influx and the change of the intracellular cAMP (cyclic adenosine-3',5' monophosphate) levels of rat peritoneal mast cells (RPMC) and on the anti-DNP IgE-induced histamine release of RPMC were observed. Results: The pretreatment of RC inhibited compound 48/80-induced degranulation, histamine release and intracelluar calcium uptake of RPMC. The anti-DNP IgE-induced histamine release of RPMC was significantly inhibited by pretreatment of RC. The RC increased the level of intracellular cAMP of RPMC, and the pretreatment of RC inhibited compound 48/80-induced decrement of intracellular cAMP of RPMC. Conclusion: These results suggest that RC contains some substances with an activity to inhibit the compound 48/80- or anti-DNP IgE-induced mast cell activitation. The inhibitory effects of RC are likely due to the stabilization of mast cells by blocking the calcium uptake and enhancing the level of intracellular cAMP.

N-acetyl-L-cysteine and cysteine increase intracellular calcium concentration in human neutrophils

  • Hasan, Md. Ashraful;Ahn, Won-Gyun;Song, Dong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.449-457
    • /
    • 2016
  • N-acetyl-L-cysteine (NAC) and cysteine have been implicated in a number of human neutrophils' functional responses. However, though $Ca^{2+}$ signaling is one of the key signalings contributing to the functional responses of human neutrophils, effects of NAC and cysteine on intracellular calcium concentration ($[Ca^{2+}]_i$) in human neutrophils have not been investigated yet. Thus, this study was carried out with an objective to investigate the effects of NAC and cysteine on $[Ca^{2+}]_i$ in human neutrophils. We observed that NAC ($1{\mu}M{\sim}1mM$) and cysteine ($10{\mu}M{\sim}1mM$) increased $[Ca^{2+}]_i$ in human neutrophils in a concentration-dependent manner. In NAC pre-supplmented buffer, an additive effect on N-formyl-methionine-leucine-phenylalanine (fMLP)-induced increase in $[Ca^{2+}]_i$ in human neutrophils was observed. In $Ca^{2+}$-free buffer, NAC- and cysteine-induced $[Ca^{2+}]_i$ increase in human neutrophils completely disappeared, suggesting that NAC- and cysteine-mediated increase in $[Ca^{2+}]_i$ in human neutrophils occur through $Ca^{2+}$ influx. NAC- and cysteine-induced $[Ca^{2+}]_i$ increase was effectively inhibited by calcium channel inhibitors SKF96365 ($10{\mu}m$) and ruthenium red ($20{\mu}m$). In $Na^+$-free HEPES, both NAC and cysteine induced a marked increase in $[Ca^{2+}]_i$ in human neutrophils, arguing against the possibility that $Na^+$-dependent intracellular uptake of NAC and cysteine is necessary for their $[Ca^{2+}]_i$ increasing activity. Our results show that NAC and cysteine induce $[Ca^{2+}]_i$ increase through $Ca^{2+}$ influx in human neutrophils via SKF96365- and ruthenium red-dependent way.

TRPC-Mediated Current Is Not Involved in Endocannabinoid-Induced Short-Term Depression in Cerebellum

  • Chang, Won-Seok;Kim, Jun;Kim, Sang-Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.2
    • /
    • pp.139-144
    • /
    • 2012
  • It has been reported that activation of metabotropic glutamate receptor 1 (mGluR1) can mediate endocannabinoid-induced short-term depression of synaptic transmission in cerebellar parallel fiber (PF)-Purkinje cell (PC) synapse. mGluR1 has signaling pathways involved in intracellular calcium increase which may contribute to endocannabinoid release. Two major mGluR1-evoked calcium signaling pathways are known: (1) slow-kinetic inward current carried by transient receptor potential canonical (TRPC) channel which is permeable to $Ca^{2+}$; (2) $IP_3$-induced calcium release from intracellular calcium store. However, it is unclear how much each calcium source contributes to endocannabinoid signaling. Here, we investigated whether calcium influx through mGluR1-evoked TRPC channel contributes to endocannabinoid signaling in cerebellar Purkinje cells. At first, we applied SKF96365 to inhibit TRPC, which blocked endocannabinoid-induced short-term depression completely. However, an alternative TRP channel inhibitor, BTP2 did not affect endocannabinoid-induced short-term depression although it blocked mGluR1-evoked TRPC currents. Endocannabinoid signaling occurred normally even though the TRPC current was mostly blocked by BTP2. Our data imply that TRPC current does not play an important role in endocannabinoid signaling. We also suggest precaution in applying SKF96365 to inhibit TRP channels and propose BTP2 as an alternative TRPC inhibitor.

Effects of Extracellular Calcium and Starvation on Biochemical Indices of the Rat Hepatocytes

  • Kim, Ki-Sung
    • Toxicological Research
    • /
    • v.11 no.2
    • /
    • pp.199-203
    • /
    • 1995
  • The focus of this study was to investigate that cellular parameters and glucose uptake might be altered by extracellular calcium and starvation. Addition of 1 mM $Ca^{++}$ to hepatocytes (equalling to the free calcium concentration of blood) significantly increased intracellular $Na^+$ and decreased $Na^+$ & LDH leakage. This pertains to the hepatocytes of control rats as well as those of rats fasted for 24 and 48. hr. These effects might be come from the membrane-stabilizing effects of calcium. But calcium had no effects on cell volumes, superoxide-formation and glucose uptake. Actually hepatocytes of starved rats showed changes in several cellular parameters. Starvation increased LDH leakage, glucose uptake and the total concentration of $Na^+$ and $Na^+$ whereas it markedly decreased cell volumes. Since total tonicity remained unchanged, intracellular $Na^+$ and $Na^+$ could contribute to a higher share of total osmolarity in starvation. Starvation increased the cytoplasmic pH because $R-NH^{3+}$ions and their corresponding counterions disappeared. This increase may be related to suppress the protonization of amino groups in proteins. Starvation decreased hepatic glycogen, a major compound that affects cytosolic volume of hepatocytes. The data indicate that starvation increases the glucose transport activity. The possible molecular basis will be discussed.

  • PDF

Redistribution of Intracellular Calcium Stores with Shear Stress-induced Cytoskeleton Organization in Human Endothelial Cell

  • Chung, Chan-Il;Chang, Hyun-A;Chang, Jun-Keun;Han, Dong-Chul;Min, Byoung-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.97-99
    • /
    • 1996
  • Intracellular gradients of the free calcium concentration are thought to be critical for the localization of functional responses within a cell. The mechanism of mechanotransduction may be associated with the localized accumulation of calcium stores for shear stress-exposed endothelial cells. The distribution of the calcium stores and the formation of the stress fibers were investigated by the indirect double immunofluorescent staining method with the calreticulin antibody and rhodamine phalloidin under flow condition. The shear stress of steady flow reorganized the cytoskeleton structure including the bundling and translocation to focal contacts. The calcium stores translocated from the cytoplasm to the focal contacting area. Consequently. accumulation of the calcium stores may participate in the shear stress-induced cytoskeleton organization of endothelial cells.

  • PDF

Unveiling the impact of lysosomal ion channels: balancing ion signaling and disease pathogenesis

  • Yoona Jung;Wonjoon Kim;Na Kyoung Shin;Young Min Bae;Jinhong Wie
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.311-323
    • /
    • 2023
  • Ion homeostasis, which is regulated by ion channels, is crucial for intracellular signaling. These channels are involved in diverse signaling pathways, including cell proliferation, migration, and intracellular calcium dynamics. Consequently, ion channel dysfunction can lead to various diseases. In addition, these channels are present in the plasma membrane and intracellular organelles. However, our understanding of the function of intracellular organellar ion channels is limited. Recent advancements in electrophysiological techniques have enabled us to record ion channels within intracellular organelles and thus learn more about their functions. Autophagy is a vital process of intracellular protein degradation that facilitates the breakdown of aged, unnecessary, and harmful proteins into their amino acid residues. Lysosomes, which were previously considered protein-degrading garbage boxes, are now recognized as crucial intracellular sensors that play significant roles in normal signaling and disease pathogenesis. Lysosomes participate in various processes, including digestion, recycling, exocytosis, calcium signaling, nutrient sensing, and wound repair, highlighting the importance of ion channels in these signaling pathways. This review focuses on different lysosomal ion channels, including those associated with diseases, and provides insights into their cellular functions. By summarizing the existing knowledge and literature, this review emphasizes the need for further research in this field. Ultimately, this study aims to provide novel perspectives on the regulation of lysosomal ion channels and the significance of ion-associated signaling in intracellular functions to develop innovative therapeutic targets for rare and lysosomal storage diseases.