Browse > Article
http://dx.doi.org/10.7841/ksbbj.2012.27.5.313

An Increased Intracellular Calcium Ion Concentration in Response to Dimethyl Sulfoxide Correlates with Enhanced Expression of Recombinant Human Cyclooxygenase 1 in Stably Transfected Drosophila melanogaster S2 Cells  

Chang, Kyung Hwa (Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University)
Park, Jong-Hwa (Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University)
Kim, Do Hyung (Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University)
Chung, Ha Young (Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University)
HwangBo, Jeon (Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University)
Lee, Hyun Ho (Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University)
Lee, Hee-Young (Medican Co., Ltd.)
Shon, Dong-Hwa (Korea Food Research Institute)
Kim, Wonyong (Department of Microbiology & Research Institute for Translational System Biomics, Chung-Ang University College of Medicine)
Chung, In Sik (Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University)
Publication Information
KSBB Journal / v.27, no.5, 2012 , pp. 313-318 More about this Journal
Abstract
Dimethyl sulfoxide (DMSO) increased the intracellular calcium ion concentration in stably transfected Drosophila melanogaster S2 cells expressing recombinant cyclooxygenase 1 (COX-1). DMSO did not increase the Drosophila NOS (dNOS) transcript level in calcium chelator-treated cells. Expression of recombinant COX-1 due to DMSO was diminished in cells treated with calcium chelators or channel blockers. Our results indicate that an increased intracellular calcium ion concentration due to DMSO is associated with up-regulation of the dNOS gene, leading to enhanced expression of COX-1.
Keywords
recombinant cyclooxygenase 1; dimethyl sulfoxide; Drosophila melanogaster S2 cells; calcium ion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Marletta, M. A. (1994) Nitric oxide synthase: aspects concerning structure and catalysis. Cell 78: 927-930.   DOI   ScienceOn
2 Nathan, C. and Q. Xie (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78: 915-918.   DOI   ScienceOn
3 Putney, J. W. (1990) Capacitive calcium entry revisited. Cell Calcium 11: 611-624.   DOI   ScienceOn
4 MacPherson, M. R., V. P. Pollock, K. E. Broderick, L. Kean, F. C. O'Connell, J. A. Dow, and S. A. Davies (2001) Model organisms: new insights into ion channel and transport function. L-type calcium channels regulate epithelial fluid transport in Drosophila melanogaster. Am. J. Physiol. Cell Physiol. 280: C394-407.   DOI
5 Moraes, A. M., S. A. Jorge, R. M. Astray, C. A. Suazo, C. E. Calderón Riquelme, E. F. Augusto, A. Tonso, M. M. Pamboukian, R. A. Piccoli, M. F. Barral, and C. A. Pereira (2012) Drosophila melanogaster S2 cells for expression of heterologous genes: from gene cloning to bioprocess development. Biotechnol. Adv. 30: 613-628.   DOI
6 Angelichio, M. L., J. A. Beck, H. Johansen, and M. Ivey-Hoyle (1991) Comparison of several promoters and polyadenylation signals for use in heterologous gene expression in cultured Drosophila cells. Nucleic Acids Res. 19: 5037-5043.   DOI
7 Maroni, G., E. Otto, and D. Lastowski-Perry (1986) Molecular and cytogenetic characterization of a metallothionein gene of Drosophila. Genetics 112: 493-504.
8 Hamer, D. H. (1986) Metallothionein. Annu. Rev. Biochem. 55: 913-951.   DOI
9 Palmiter, R. D. (1998) The elusive functions of metallothioneins. Proc. Natl. Acad. Sci. USA 95: 8428-8430.   DOI
10 Otto, E., J. M. Allen, J. E. Young, R. D. Palmiter, and G. Maroni (1987) A DNA segment controlling metal-regulated expression of the Drosophila melanogaster metallothionein gene MTn. Mol. Cell Biol. 7: 1710-1715.   DOI
11 Johansen, H., A. van der Straten, R. Sweet, E. Otto, G. Maroni, and M. Rosenberg (1989) Regulated expression at high copy number allows production of a growth inhibitory oncogene product in Drosophila schneider cells. Genes and Development 3: 882-889.   DOI
12 Bunch, T. A., Y. Grinblat, and L. S. Goldstein (1988) Characterization and use of the Drosophila metallothionein promoter in cultured Drosophila melanogaster cells. Nucleic Acids Res. 16: 1043-1061.   DOI
13 Yenofsky, R., S. Cereghini, A. Krowczynska, and G. Brawerman (1983) Regulation of mRNA utilization in mouse erythroleukemia cells induced to differentiate by exposure to dimethyl sulfoxide. Mol. Cell Biol. 3: 1197-1203.   DOI
14 Wahl, M. F., G. H. An, and J. M. Lee (1995) Effects of dimethylsulfoxide on heavy chain monoclonal antibody production from plant cell culture. Biotechnol. Lett. 17: 463-468.   DOI
15 Hanahan, D. (1983) Studies on transformation of Escherichia coli with plasmids. Mol. Biol. 166: 557-580.   DOI
16 Melkonyan, H., C. Sorg, and M. Klempt (1996) Electroporation efficiency in mammalian cells is increased by dimethyl sulfoxide (DMSO). Nucleic Acids Res. 24: 4356-4357.   DOI
17 Pollerberg, G. E., M. Schachner, and J. Davoust (1986) Differentiation state-dependent surface mobilities of two forms of the neural cell adhesion molecule. Nature 324: 462-465.   DOI
18 Wang, W., X. Yi, and Y. Zhang (2007) Gene transcription acceleration: main cause of hepatitis B surface antigen production improvement by dimethylsulfoxide in the culture of Chinese hamster ovary cells. Biotechnol. Bioeng. 97: 526-535.   DOI
19 Sumida, K., Y. Igarashi, N. Toritsuka, T. Matsushita, K. Abe- Tomizawa, M. Aoki, T. Urushidani, H. Yamada, and Y. Ohno (2011) Effects of DMSO on gene expression in human and rat hepatocytes. Human Exp. Toxicol. 30: 1701-1709.   DOI
20 Gouveia, R., S. Kandzia, H. S. Conradt, and J. Costa (2010) Production and N-glycosylation of recombinant human adhesion molecule L1 from insect cells using the stable expression system. Effect of dimethyl sulfoxide. J. Biotechnol. 145: 130-138.   DOI
21 Regulski, M. and T. Tully (1995) Molecular and biochemical characterization of dNOS: Drosophila $Ca^{2+}$/calmodulin-dependent nitric oxide synthase. Proc. Natl. Acad. Sci. USA 92: 9072-9076.   DOI
22 Park, J. H., K. H. Chang, Y. H. Lee, H. Y. Kim, J. M. Yang, and I. S. Chung (2002) Production of recombinant rotavirus capsid protein VP7 from stably transformed Drosophila melanogaster S2 cells. J. Microbial. Biotechnol. 12: 563-568.
23 Chang, K. H., J. H. Park, Y. H. Lee, J. H. Kim, H. O. Chun, J. H. Kim, and I. S. Chung (2002) Dimethyl-sulfoxide and sodium butyrate enhance the production of recombinant cyclooxygenase 2 in stably transformed Drosophila melanogaster S2 cells. Biotechnol. Lett. 24: 1353-1359.   DOI
24 Chang, K. H., J. H. Park, H. Y. Chung, J. Hwang-Bo, H. H. Lee, D. H. Kim, Y. Soh, and I. S. Chung (2012) Enhanced expression of recombinant human cyclooxygenase 1 from stably-transfected Drosophila melanogaster S2 cells by dimethyl sulfoxide is mediated by up-regulation of nitric oxide synthase and transcription factor Kr-h1. Biotechnol. Lett. 34: 1243-1250.   DOI
25 Morley, P. and J. F. Whitfield (1993) The differentiation inducer, dimethyl sulfoxide, transiently increases the intracellular calcium ion concentration in various cell types. J. Cell Physiol. 156: 219-225.   DOI   ScienceOn
26 Yamamoto, N. (1989) Effect of dimethyl sulfoxide on cytosolic ionized calcium concentration and cytoskeletal organization of hepatocytes in a primary culture. Cell Struct. Funct. 14: 75-85.   DOI
27 Trubiani, O., C. Pieri, M. Rapino, and R. Di Primito (1999) The c-myc gene regulates the polyamine pathway in DMSOinduced apoptosis. Cell Prolif. 32: 119-129.   DOI
28 Bading, H., G. E. Hardingham, C. M. Johnson, and S. Chawla (1997) Gene regulation by nuclear and cytoplasmic calcium signals. Biochem. Biophys. Res. Commun. 236: 541-543.   DOI