• 제목/요약/키워드: intracellular SOD

검색결과 104건 처리시간 0.028초

온담탕가미방(溫膽湯加味方)의 항산화와 Serotonin 대사 과정에 미치는 영향 (The Effects of OnDam-tang-Kami-bang (ODK) in Antioxidant and Serotonin Metabolism Testing on P815 Cell)

  • 설선희;이상룡;정인철
    • 동의신경정신과학회지
    • /
    • 제24권2호
    • /
    • pp.189-200
    • /
    • 2013
  • Objectives : The purpose of this study is to examine the effects of antioxidant activities and serotonin activities of OnDam-tang-Kami-bang (ODK) on P815 Mast Cell. Methods : The effects of ODK on the activation of DPPH radical-scavenging and SOD in P815 mast cell were investigated. The effect of ODK on the content of serotonin in P815 mast cell was investigated. The effects of ODK on the activation of 5-HTT, TPH-1 mRNA in P815 mast cell were investigated. Results : It was found that the ODK increased SOD activities and DPPH radical-scavenging activities in the P815 mast cell. Also, the ODK decreased the intracellular concentration of serotonin in the P815 mast cell. Further, the ODK decreased 5-HTT and TPH-1 mRNA expression in the P815 mast cell. Conclusions : The results of this experiment reveal that ODK has significant antioxidative effects. However, ODK decreased the intracellular concentration of serotonin and mRNA expression of 5-HTT and TPH-1, which implies that ODK might not be effective for treating depression. Further research exploring the positive aspects of ODK is suggested such that ODK could adequately target symptoms that are to be treated.

Protective Effects of Chungkookjang Extract on High Glucose Induced Oxidative Stress in LLC-PK1 Cells

  • Yi, Na-Ri;Seo, Kyoung-Chun;Choi, Ji-Myung;Cho, Eun-Ju;Song, Young-Ok;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • 제13권2호
    • /
    • pp.84-89
    • /
    • 2008
  • This study was designed to investigate the protective effect of a methanol extract of Chungkookjang (CKJ) on high glucose induced oxidative stress in LLC-$PK_1$ cells (renal tubular epithelial cells), which are susceptible to oxidative stress. Freeze dried CKJ powder was extracted with methanol, and the extract solution was concentrated, and then used in this study. To determine the protective effect of CKJ extract, oxidative stress was induced by exposing of LLC-$PK_1$ cells to high glucose (30 mM) or normal glucose (5 mM) for 24 hr. Exposure of LLC-$PK_1$ cells to high glucose for 24 hr resulted in a significant (p<0.05) decrease in cell viability, catalase, SOD and GSH-px activity and a significant (p<0.05) increase in intracellular ROS level and thiobarbituric acid reactive substances (TBARS) formation in comparison to the cells treated with 5 mM glucose. CKJ extract treatment decreased intracellular ROS level and TBARS formation, and increased cell viability and activities of antioxidant enzymes including catalase, SOD and GSH-px in high glucose pretreated LLC-$PK_1$ cells. These results suggest that CKJ extract may be able to protect LLC-$PK_1$ cells from high glucose-induced oxidative stress, partially through the antioxidative defense systems.

Streptomyces subrutilus P5가 생산하는 철 함유 superoxide dismutase의 분비 (Secretion of the iron containing superoxide dismutase of Streptomyces subrutilus P5)

  • 박재승;김재헌
    • 미생물학회지
    • /
    • 제51권2호
    • /
    • pp.108-114
    • /
    • 2015
  • 본 연구에서는 Streptomyces subrutilus P5의 생장과 세포내 외 철 함유 superoxide dismutase 활성을 비교 분석하여 철함유 superoxide dismutase의 분비 시점을 확인하고 분자 수준에서 이 효소의 분비에 관여하는 유전정보를 확인하고자 하였다. Streptomyces subrutilus P5의 균체 생장은 건체 중량을 측정하여 결정하였다. Glucose는 log phase에서 급격히 소모되어 24시간 후에 이르러 완전히 고갈되었다. 세포내의 철 함유 superoxide dismutase는 배양 후 3시간에 나타나며 세포외 철 함유 superoxide dismutase는 배양 후 7.5시간부터 나타난다. 따라서 superoxide dismutase는 용균에 의해서가 아니라 능동적인 분비기작에 의해서 세포 외로 분비된 것으로 추측할 수 있다. Streptomyces subrutilus P5의 sodF에는 signal peptide 유전정보가 존재하지 않았다. 그러나 sodF의 상류지역에서 다른 세균의 type III 분비단백질 유전자와 유사한 type III 분비상자가 발견되었다. Streptomyces 균주에서 type III 분비단백질이 존재할 가능성이 있음을 처음으로 제시하였다.

Columbianadin Inhibits Cell Proliferation by Inducing Apoptosis and Necroptosis in HCT116 Colon Cancer Cells

  • Kang, Ji In;Hong, Ji-Young;Choi, Jae Sue;Lee, Sang Kook
    • Biomolecules & Therapeutics
    • /
    • 제24권3호
    • /
    • pp.320-327
    • /
    • 2016
  • Columbianadin (CBN), a natural coumarin from Angelica decursiva (Umbelliferae), is known to have various biological activities including anti-inflammatory and anti-cancer effects. In this study, the anti-proliferative mechanism of actions mediated by CBN was investigated in HCT-116 human colon cancer cells. CBN effectively suppressed the growth of colon cancer cells. Low concentration (up to $25{\mu}M$) of CBN induced apoptosis, and high concentration ($50{\mu}M$) of CBN induced necroptosis. The induction of apoptosis by CBN was correlated with the modulation of caspase-9, caspase-3, Bax, Bcl-2, Bim and Bid, and the induction of necroptosis was related with RIP-3, and caspase-8. In addition, CBN induced the accumulation of ROS and imbalance in the intracellular antioxidant enzymes such as SOD-1, SOD-2, catalase and GPx-1. These findings demonstrate that CBN has the potential to be a candidate in the development of anti-cancer agent derived from natural products.

Anti-Oxidative and Anti-Inflammatory Effects of QGC in Cultured Feline Esophageal Epithelial Cells

  • Lee, Myeong Jae;Song, Hyun Ju;Jeong, Jun Yeong;Park, Sun Young;Sohn, Uy Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권1호
    • /
    • pp.81-87
    • /
    • 2013
  • Quercetin-3-O-${\beta}$-D-glucuronopyranoside (QGC) is a flavonoid glucoside extracted from Rumex Aquaticus Herba. In the present study, anti-oxidative and anti-inflammatory effects of QGC were tested in vitro. Epithelial cells obtained from cat esophagus were cultured. When the cells were exposed to acid for 2 h, cell viability was decreased to 36%. Pretreatment with 50 ${\mu}M$ QGC for 2 h prevented the reduction in cell viability. QGC also inhibited the productions of intracellular ROS by inflammatory inducers such as acid, lipopolysaccharide, indomethacin and ethanol. QGC significantly increased the activities of superoxide dismutase (SOD) and catalase, and also induced the expression of SOD2, while it restored the decrease of catalase expression in cells exposed to acid. QGC inhibited NF-${\kappa}B$ translocation, cyclooxygenase-2 expression and $PGE_2$ secretion in cells exposed to acid, which plays an important role in the pathogenesis of esophagitis. The data suggest that QGC may well be one of the promising substances to attenuate oxidative epithelial cell injury and inflammatory signaling in esophagus inflammation.

Transcriptional Activation of CuIZn Superoxide Dismutase And Catalase Genes by Panaxadiol Ginsenosides Extracted From Panax ginseng

  • Chang, Mun-Seog;Yoo, Hae-Yong;Rho, Hyune-Mo
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1998년도 Advances in Ginseng Research - Proceedings of the 7th International Symposium on Ginseng -
    • /
    • pp.63-70
    • /
    • 1998
  • Superoxide dismutase (SOD) and catalase constitute the first coordinated unit of defense against reactive oxygen species. Here, we examined the effect of ginseng saponins on the induction of SOD and catalase gene expression. To explore this possibility, the upstream regulatory promoter region of Cu/Zn superoxide dismutase (SODI) and catalase genes were linked to the chloramphenicol acetyl-transferase (CATI structural gene and introduced into human hepatoma HepG2 cells. Total saponin and panaxatriol did not activate the transcription of SODI and catalase genes but panaxadiol increased the transcription of these genes about 2-3 fold. Among the Panaxadiol ginsenosides, the Rb2 subtraction appeared to is a major induce of SODI and catalase genes. Using the deletion analyses and mobility shift assays, we showed that the 5051 gene was greatly activated by ginsenoside Rba through transcription factor AP2 binding sites and its induction. We also examined the effect of the content ratio of panaxadiol extracted from various compartment of ginseng on the transcription of 5031 gene. Saponin extract that contains 2.6-fold more PD than PT from the fine root Increased the SODI induction about 3-fold. These results suggest that the panaxadiol fraction and its ginsenosides could induce the antioxidant enzymes, which are important for maintaining cell viability by lowering level of oxygen radical generated from intracellular metabolism.

  • PDF

절식이 흰쥐의 간과 신장의 Thiobarbituric Acid-Reactive Substance량 및 항산화효소 활성도에 미치는 영향 (Effects of Total Dietary Restriction on the Contents of Thiobarbituric Acid-Reactive Substance and Antioxidant Enzymes in the Liver and Kidney of Rats)

  • 박평심;고춘남;박재윤
    • 한국식품영양과학회지
    • /
    • 제28권2호
    • /
    • pp.471-476
    • /
    • 1999
  • The effects of total dietary restriction(100% restriction of energy intake) on thiobarbituric acid reactive substance(TBARS) contents and intracellular antioxidant enzymes activities in the liver and kidney of young male Sprague Dawley rats were studied. The TBARS contents were reduced in both liver and kidney, up to 77% and 79% of the control rats, fed ad libitum, respectively at 7 days after dietary restriction . Superoxide dismutase(SOD) activities in the liver and kidney of rats were increased significantly by total dietary restriction. However, the activity of catalase in kidney was decreased 27% at 6 days after dietary restriction, but this enzyme activity did not change in liver. The changes of glutathione peroxidae(GSHPx) and catalase activities in the liver and kidney of rats with dietary restriction were not significant. These result suggested that dietary restriction reduce the free radical induced by tissue damage, as determined by TBARS content, in both the liver and kidney but the changes of activities of antioxidant enzymes may not be a contributory factor in reducing oxidative damage to tissue.

  • PDF

p66Shc in sheep preimplantation embryos: Expression and regulation of oxidative stress through the manganese superoxide dismutase-reactive oxygen species metabolic pathway

  • Tong Zhang;Jiaxin Zhang;Ruilan Li
    • Animal Bioscience
    • /
    • 제36권7호
    • /
    • pp.1022-1033
    • /
    • 2023
  • Objective: p66Shc, a 66 kDa protein isoform encoded by the proto-oncogene SHC, is an essential intracellular redox homeostasis regulatory enzyme that is involved in the regulation of cellular oxidative stress, apoptosis induction and the occurrence of multiple age-related diseases. This study investigated the expression profile and functional characteristics of p66Shc during preimplantation embryo development in sheep. Methods: The expression pattern of p66Shc during preimplantation embryo development in sheep at the mRNA and protein levels were studied by quantitative real-time polymerase chain reaction (RT-qPCR) and immunofluorescence staining. The effect of p66Shc knockdown on the developmental potential were evaluated by cleavage rate, morula rate and blastocyst rate. The effect of p66Shc deficiency on reactive oxygen species (ROS) production, DNA oxidative damage and the expression of antioxidant enzymes (e.g., catalase and manganese superoxide dismutase [MnSOD]) were also investigated by immunofluorescence staining. Results: Our results showed that p66Shc mRNA and protein were expressed in all stages of sheep early embryos and that p66Shc mRNA was significantly downregulated in the 4-to 8-cell stage (p<0.05) and significantly upregulated in the morula and blastocyst stages after embryonic genome activation (EGA) (p<0.05). Immunofluorescence staining showed that the p66Shc protein was mainly located in the peripheral region of the blastomere cytoplasm at different stages of preimplantation embryonic development. Notably, serine (Ser36)-phosphorylated p66Shc localized only in the cytoplasm during the 2- to 8-cell stage prior to EGA, while phosphorylated (Ser36) p66Shc localized not only in the cytoplasm but also predominantly in the nucleus after EGA. RNAi-mediated silencing of p66Shc via microinjection of p66Shc siRNA into sheep zygotes resulted in significant decreases in p66Shc mRNA and protein levels (p<0.05). Knockdown of p66Shc resulted in significant declines in the levels of intracellular ROS (p<0.05) and the DNA damage marker 8-hydroxy2'-deoxyguanosine (p<0.05), markedly increased MnSOD levels (p<0.05) and resulted in a tendency to develop to the morula stage. Conclusion: These results indicate that p66Shc is involved in the metabolic regulation of ROS production and DNA oxidative damage during sheep early embryonic development.

Protective Effects of the Postbiotic Levilactobacillus brevis BK3 against H2O2-Induced Oxidative Damage in Skin Cells

  • Young-Sun Lee;Su-Jeong Lee;Won Je Jang;Eun-Woo Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권7호
    • /
    • pp.1401-1409
    • /
    • 2024
  • Postbiotics have various functional effects, such as antioxidant, anti-inflammatory, and anti-obesity. Levilactobacillus brevis BK3, the subject of this study, was derived from lactic acid bacteria isolated from Kimchi, a traditional Korean fermented food. The antioxidant activity of BK3 was confirmed through the measurements of 2,2-diphenyl-1-picryl-hydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and total antioxidant capacity (TAC). The wrinkle improvement effect was validated by assessing elastase inhibitory activity and collagenase inhibitory activity. The intracellular activity was confirmed using human keratinocytes (HaCaT) and human fibroblasts (HFF-1). BK3 protects skin cells from oxidative stress induced by H2O2 and reduces intracellular reactive oxygen species (ROS) production. In addition, the expressions of the antioxidant genes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were upregulated. Meanwhile, matrix metalloproteinase-1 (MMP-1) and collagen type I alpha 1 (COL1A1), involved in collagen degradation and synthesis, were significantly regulated. These results suggest the possibility of utilizing BK3 as a functional ingredient with antioxidant and wrinkle-improving effects.

Protective Effect of Ginsenoside R0 on Anoxic and Oxidative Damage In vitro

  • Jiang, Zhou;Wang, Yuhui;Zhang, Xiaoyun;Peng, Tao;Li, Yanqing;Zhang, Yi
    • Biomolecules & Therapeutics
    • /
    • 제20권6호
    • /
    • pp.544-549
    • /
    • 2012
  • To examine the neuroprotective effects of ginsenoside R0, we investigated the effects of ginsenoside R0 in PC12 cells under an anoxic or oxidative environment with Edaravone as a control. PC12 neuroendocrine cells were used as a model target. Anoxic damage or oxidative damage in PC12 cells were induced by adding sodium dithionite or hydrogen peroxide respectively in cultured medium. Survival ratios of different groups were detected by an AlamarBlue assay. At the same time, the apoptosis of PC12 cells were determined with flow cytometry. The putative neuroprotective effects of ginsenoside R0 is thought to be exerted through enhancing the activity of antioxidant enzymes Superoxide dismutases (SOD). The activity of SOD and the level of malondialdehyde (MDA) and intracellular reactive oxygen species (ROS), were measured to evaluate the protective and therapeutic effects of ginsenoside R0. Ginsenoside R0 treated cells had a higher SOD activity, lower MDA level and lower ROS, and their survival ratio was higher with a lower apoptosis rate. It is suggested that ginsenoside R0 has a protective effect in the cultured PC12 cells, and the protection efficiency is higher than Edaravone. The protective mechanisms of these two are different. The prevent ability of ginsenoside R0 is higher than its repair ability in neuroprotection in vitro.