• 제목/요약/키워드: intestinal absorption

검색결과 271건 처리시간 0.025초

미생물 모방대사를 이용한 천연물의 생물전환 (Microbial Mimic Metabolism of Natural Products)

  • 고학룡;안순철
    • 한국해양바이오학회지
    • /
    • 제2권1호
    • /
    • pp.11-22
    • /
    • 2007
  • This aims to review natural products transformed by mimic intestinal metabolisms with microorganisms and hydrolytic enzymes, which exhibit enforced biological activity, higher extraction yield and identification of active components. In the process, transformation to the smaller active compounds with enzymes and microbes mimics the pharmacological action of natural products by intestinal bacteria. In order to establish conditions for the fermentation and enzyme reaction, it is required to choose several natural products for biotransformation and investigate the optimal conditions for the fermentation or the enzyme reaction such as composition, temperature, pH, inoculum, and cultivation time. It is expected an increase of the internal absorption of the active materials without regard to the intestinal microbes or its ability through biosynthesis of the active materials by the microbes and enzymes. And this techniques can be applied to biotransformation of natural products such as sesaminol, resveratrol, 1-deoxy nojirimycin, naringenin, quercetin, and baicalin and to the metabolism study using the animal model.

  • PDF

노화에 따른 위장관 기능의 변화 (Aging and Gasroenterrogi Changes)

  • 조우균
    • 한국식품영양학회지
    • /
    • 제6권3호
    • /
    • pp.219-230
    • /
    • 1993
  • This research aims to study the changes In gastrointestinal function attributed to aging In human. The thresholds for recognition and detection of flavors became elevated and salivary gland acinar cells decreased in the old age. But most esophageal function remained relatively Intact. Although gastric emptying time has been slowed with aging, the total intestinal transit time did not differ. Atropic gastritis due to H. pylori in old man decreased secretion of acid and Intrinsic factor and absorbability of calcium and iron. Pancreatic secretion is droned in older persons. Prevalence of gallstones rised with age. Liver size and portal blood flow decreased significantly with age. Mucosal surface area has been reported to be slightly diminished in the aging man. Glucose transporters decreased and Insulin tolerance Increased. Absorption of aromatic amino acid is diminished with age. Dietary protein In that aging human increased fecal nitrogen excretion. Vitamin A tolerance increased. Vitamin D receptor concentration decreased and resistance to 1,25-(OH)2D3 action increased. Permeability of aging small Intestine Increased. Zinc balance dirt not differ Copper absorption appeared not to be significantly affected by age. Neurotensin secretion decreased thus slowed colonic peristaltic movements and Intestinal mucosal growth.

  • PDF

흰쥐 모델에서 Capsaicin이 소장 콜레스테롤 및 중성지방 흡수율에 미치는 영향 (Effect of Enteral Capsaicin on the Lymphatic Absorption of Cholesterol and Fats in Rats)

  • 서윤정;김주연;노상규
    • 한국식품영양과학회지
    • /
    • 제38권12호
    • /
    • pp.1712-1717
    • /
    • 2009
  • 본 연구는 capsaicin 투여가 콜레스테롤을 포함한 지방의 소장 흡수율에 어떠한 영향을 미치는지를 조사하기 위해서 설계되었다. 지방의 소장 흡수율을 측정하기 위해서 흰쥐 소장 지방 흡수율 측정모델을 이용하여, 쥐의 십이지장으로 capsaicin이 포함된 지질유화액을 8시간 동안 지속적으로 주 입하면서 8시간 동안 림프관으로 분비되는 14C-cholesterol, α-tocopherol, 지방산을 분석하여 capsaicin에 의한 영향을 비교하였다. 8시간 동안 분비된 림프액의 양은 대조군과 capsaicin군 간에 유의적인 차이를 나타내지 않았다. α-tocopherol의 흡수율에서도 유의적인 차이가 없었다. 그러나 총 8시간 그리고 시간대별 14C-cholesterol 흡수율은 대조군과 비교하였을 때 capsaicin군에서 유의적인 차이로 감소되는 경향을 보였다. 또한 중성지방의 흡수율의 비교에서도 팔미트산, 스테아르산, 아라키돈산, DHA의 흡수율은 두 군 간에 유의적인 차이가 없었으나 지방유화액을 통해 주입한 올레인산의 흡수율에서는 유의적인 감소현상을 보였다. 결론적으로, capsaicin의 응용성은 비만 치료 및 지방대사 조절과 관련해 특히, 소장 지방 흡수대사에 치중한 식이적인 수단의 근거로써 활용이 기대된다.

Characterization of the bacterial microbiota across the different intestinal segments of the Qinghai semi-fine wool sheep on the Qinghai-Tibetan Plateau

  • Wang, Xungang;Hu, Linyong;Liu, Hongjin;Xu, Tianwei;Zhao, Na;Zhang, Xiaoling;Geng, Yuanyue;Kang, Shengping;Xu, Shixiao
    • Animal Bioscience
    • /
    • 제34권12호
    • /
    • pp.1921-1929
    • /
    • 2021
  • Objective: The intestinal microbiota enhances nutrient absorption in the host and thus promotes heath. Qinghai semi-fine wool sheep is an important livestock raised in the Qinghai-Tibetan Plateau; however, little is known about the bacterial microbiota of its intestinal tract. The aim of this study was to detect the microbial characterization in the intestinal tract of the Qinghai semi-fine wool sheep. Methods: The bacterial profiles of the six different intestinal segments (duodenum, jejunum, ileum, cecum, colon and rectum) of Qinghai semi-fine wool sheep were studied using 16S rRNA V3-V4 hypervariable amplicon sequencing. Results: A total of 2,623,323 effective sequences were obtained, and 441 OTUs shared all six intestinal segments. The bacterial diversity was significantly different among the different intestinal segments, and the large intestine exhibited higher bacterial diversity than the small intestine. Firmicutes, Bacteroidetes, and Patescibacteria were the dominant phyla in these bacterial communities. Additionally, at the genus level, Prevotella_1, Candidatus_Saccharimonas, and Ruminococcaceae_UCG-005 were the most predominant genus in duodenal segment, jejunal and ileal segments, and cecal, colonic, and rectal segments, respectively. We predicted that the microbial functions and the relative abundance of the genes involved in carbohydrate metabolism were overrepresented in the intestinal segments of Qinghai semi-fine wool sheep. Conclusion: The bacterial communities and functions differed among different intestinal segments. Our study is the first to provide insights into the composition and biological functions of the intestinal microbiota of Qinghai semi-fine wool sheep. Our results also provide useful information for the nutritional regulation and production development in Qinghai semi-fine wool sheep.

Different Phosphate Transport in the Duodenum and Jejunum of Chicken Response to Dietary Phosphate Adaptation

  • Fang, Rejun;Xiang, Zhifeng;Cao, Manhu;He, Jia
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권10호
    • /
    • pp.1457-1465
    • /
    • 2012
  • Intestinal phosphate (Pi) absorption across the apical membrane of small intestinal epithelial cells is mainly mediated by the type IIb Na-coupled phosphate co-transporter (NaPi-IIb), but its expression and regulation in the chicken remain unclear. In the present study, we investigated the mRNA and protein levels of NaPi-IIb in three regions of chicken small intestine, and related their expression levels to the rate of net phosphate absorption. Our results showed that maximal phosphate absorption occurs in the jejunum, however the highest expression levels of NaPi-IIb mRNA and protein occurs in the duodenum. In response to a low-Pi diet (TP 0.2%), there is an adaptive response restricted to the duodenum, with increased brush border membrane (BBM) Na-Pi transport activity and NaPi-IIb protein and mRNA abundance. However, when switched from a low-(TP 0.2%) to a normal diet (TP 0.6%) for 4 h, there is an increase in BBM NaPi-IIb protein abundance in the jejunum, but no changes in BBM NaPi-IIb mRNA. Therefore, our study indicates that Na-Pi transport activity and NaPi-IIb protein expression are differentially regulated in the duodenum vs the jejunum in the chicken.

셀레늄의 동물체내 대사 및 이용에 관한 고찰 (Review for Selenium Metabolism and Its Bioavailability in the Animal)

  • 김완영;노환국
    • 현장농수산연구지
    • /
    • 제6권1호
    • /
    • pp.90-101
    • /
    • 2004
  • Se is essential for a number of enzymes that perform important metabolic functions necessary for good health. However, people in many countries do not appear to consume adequate amounts of Se to support the maximal expression of the selenoproteins and Se retention in the body of animals and humans is dependent on the ingested Se source such as organic and inorganic Se. Therefore, this review was discussed to explore metabolic characterization regarding intestinal absorption, bioavailability and selenoprotein synthesis according to animal species such as monogastrics including human beings and ruminants. Generally, organic Se provided to animals is more effective than inorganic Se in body retention for the animal owing to the difference of manner for intestinal absorption. But, Se absorption in ruminants depending on its chemical form still remained questioned by several microbial actions and feeding regimen in the rumen. And Se absorbed through small intestine is utilized for the synthesis of selenoproteins and/or retained as selenoamino acids in the body. Retained Se in the body may be recycled to synthesize selenoproteins as lacked of dietary Se. In conclusion, desirable forms of Se ingestion in the animal may be useful for Se fortification in animal products as well as well being for humans and animals.

Lactobacillus rhamnosus CBT-LR5 Improves Lipid Metabolism by Enhancing Vitamin Absorption

  • Dong-Jin, Kim;Tai Yeub, Kim;Yeo-Sang, Yoon;Yongku, Ryu;Myung Jun, Chung
    • 한국미생물·생명공학회지
    • /
    • 제50권4호
    • /
    • pp.477-487
    • /
    • 2022
  • Probiotics provide a symbiotic relationship and beneficial effects by balancing the human intestinal microbiota. The relationships between microbiota changes and various diseases may predict health abnormalities and diseases. Treatment with vitamins and probiotics is one therapeutic approach. To evaluate the effect of probiotics on vitamin absorption, we chose Lactobacillus rhamnosus CBT-LR5 treatment, which has resistance to vitamin C-inducible toxicity, with vitamins in high-fat diet (HFD)-induced obesity models. CBT-LR5 affected the absorption of micronutrients, such as ionic minerals and water-soluble vitamins. An increase in vitamin C absorption by CBT-LR5 enhanced the antioxidant response in HFD-induced obesity models. Increased vitamin B absorption by CBT-LR5 regulated lipid metabolism in HFD-induced obesity models. These favorable effects of CBT-LR5 on the absorption of vitamins should be investigated as candidate therapeutic target treatments for metabolic diseases.

Effects of Diabetes Mellitus on the Disposition of Tofacitinib, a Janus Kinase Inhibitor, in Rats

  • Gwak, Eun Hye;Yoo, Hee Young;Kim, So Hee
    • Biomolecules & Therapeutics
    • /
    • 제28권4호
    • /
    • pp.361-369
    • /
    • 2020
  • Tofacitinib, a Janus kinase inhibitor, was developed for the treatment of rheumatoid arthritis. Recently, it has been associated with an increased change in arthritis development in patients with diabetes. Herein, we evaluated the pharmacokinetics of tofacitinib after intravenous (10 mg/kg) and oral (20 mg/kg) administration to rats with streptozotocin-induced diabetes mellitus and control rats. Following intravenous administration of tofacitinib to rats with streptozotocin-induced diabetes mellitus, area under the plasma concentration-time curve from time zero to infinity of tofacitinib was significantly smaller (33.6%) than that of control rats. This might be due to the faster hepatic intrinsic clearance (112%) caused by an increase in the hepatic cytochrome P450 (CYP) 3A1(23) and the faster hepatic blood flow rate in rats with streptozotocin-induced diabetes mellitus than in control rats. Following oral administration, area under the plasma concentration-time curve from time zero to infinity of tofacitinib was also significantly smaller (55.5%) in rats with streptozotocin-induced diabetes mellitus than that in control rats. This might be due to decreased absorption caused by the higher expression of P-glycoprotein and the faster intestinal metabolism caused by the higher expression of intestinal CYP3A1(23), which resulted in the decreased bioavailability of tofacitinib (33.0%) in rats with streptozotocin-induced diabetes mellitus. In summary, our findings indicate that diabetes mellitus affects the absorption and metabolism of tofacitinib, causing faster metabolism and decreased intestinal absorption in rats with streptozotocin-induced diabetes mellitus.

Dietary supplementation with Korean pine nut oil decreases body fat accumulation and dysregulation of the appetite-suppressing pathway in the hypothalamus of high-fat diet-induced obese mice

  • Shin, Sunhye;Park, Soyoung;Lim, Yeseo;Han, Sung Nim
    • Nutrition Research and Practice
    • /
    • 제16권3호
    • /
    • pp.285-297
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Korean pine nut oil (PNO) has been reported to suppress appetite by increasing satiety hormone release. However, previous studies have rendered inconsistent results and there is lack of information on whether dietary Korean PNO affects the expression of satiety hormone receptors and hypothalamic neuropeptides. Therefore, our study sought to evaluate the chronic effects of Korean PNO on the long-term regulation of energy balance. MATERIALS/METHODS: Five-week-old male C57BL/6 mice were fed with control diets containing 10% kcal fat from Korean PNO or soybean oil (SBO) (PC or SC) or high-fat diets (HFDs) containing 35% kcal fat from lard and 10% kcal fat from Korean PNO or SBO (PHFD or SHFD) for 12 weeks. The expression of gastrointestinal satiety hormone receptors, hypothalamic neuropeptides, and genes related to intestinal lipid absorption and adipose lipid metabolism was then measured. RESULTS: There was no difference in the daily food intake between PNO- and SBO-fed mice; however, the PC and PHFD groups accumulated 30% and 18% less fat compared to SC and SHFD, respectively. Korean PNO-fed mice exhibited higher messenger RNA (mRNA) expression of Ghsr (ghrelin receptor) and Agrp (agouti-related peptide) (P < 0.05), which are expressed when energy consumption is low to induce appetite as well as the appetitesuppressing neuropeptides Pomc and Cartpt (P = 0.079 and 0.056, respectively). Korean PNO downregulated jejunal Cd36 and epididymal Lpl mRNA expressions, which could suppress intestinal fatty acid absorption and fat storage in white adipose tissue. Consistent with these findings, Korean PNO-fed mice had higher levels of fecal non-esterified fatty acid excretion. Korean PNO also tended to downregulate jejunal Apoa4 and upregulate epididymal Adrb3 mRNA levels, suggesting that PNO may decrease chylomicron synthesis and induce lipolysis. CONCLUSIONS: In summary, Korean PNO attenuated body fat accumulation, and appeared to prevent HFD-induced dysregulation of the hypothalamic appetite-suppressing pathway.