DOI QR코드

DOI QR Code

Lactobacillus rhamnosus CBT-LR5 Improves Lipid Metabolism by Enhancing Vitamin Absorption

  • Received : 2022.08.12
  • Accepted : 2022.10.11
  • Published : 2022.12.28

Abstract

Probiotics provide a symbiotic relationship and beneficial effects by balancing the human intestinal microbiota. The relationships between microbiota changes and various diseases may predict health abnormalities and diseases. Treatment with vitamins and probiotics is one therapeutic approach. To evaluate the effect of probiotics on vitamin absorption, we chose Lactobacillus rhamnosus CBT-LR5 treatment, which has resistance to vitamin C-inducible toxicity, with vitamins in high-fat diet (HFD)-induced obesity models. CBT-LR5 affected the absorption of micronutrients, such as ionic minerals and water-soluble vitamins. An increase in vitamin C absorption by CBT-LR5 enhanced the antioxidant response in HFD-induced obesity models. Increased vitamin B absorption by CBT-LR5 regulated lipid metabolism in HFD-induced obesity models. These favorable effects of CBT-LR5 on the absorption of vitamins should be investigated as candidate therapeutic target treatments for metabolic diseases.

Keywords

Acknowledgement

This research was supported by Cell Biotech, Co., Ltd., Korea.

References

  1. Isolauri E. 2001. Probiotics in human disease. Am. J. Clin. Nutr. 73: 1142S-1146S. https://doi.org/10.1093/ajcn/73.6.1142s
  2. Hord NG. 2008. Eukaryotic-microbiota crosstalk: potential mechanisms for health benefits of prebiotics and probiotics. Annu. Rev. Nutr. 28: 215-231. https://doi.org/10.1146/annurev.nutr.28.061807.155402
  3. Faujdar SS, Mehrishi P, Bishnoi S, Sharma A. 2016. Role of probiotics in human health and disease: an update. Int. J. Curr. Microbiol. Appl. Sci. 5: 328-344. https://doi.org/10.20546/ijcmas.2016.503.040
  4. Liong MT. 2007. Probiotics: a critical review of their potential role as antihypertensives, immune modulators, hypocholesterolemics, and perimenopausal treatments. Nutr. Rev. 65: 316-328. https://doi.org/10.1301/nr.2007.jul.316?328
  5. Yan FDB Polk. 2002. Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. J. Biol. Chem. 277: 50959-50965. https://doi.org/10.1074/jbc.M207050200
  6. Madsen K. 2006. Probiotics and the immune response. J. Clin. Gastroenterol. 40: 232-234. https://doi.org/10.1097/00004836-200603000-00014
  7. Sanders ME, Guarner F, Guerrant R, Holt PR, Quigley EM, Mayer EA, et al. 2013. An update on the use and investigation of probiotics in health and disease. Gut 62: 787-796. https://doi.org/10.1136/gutjnl-2012-302504
  8. Kerry RG, Patra JK, Gouda S, Park Y, Shin HS, Das G. 2018. Benefaction of probiotics for human health: A review. J. Food Drug Anal. 26: 927-939. https://doi.org/10.1016/j.jfda.2018.01.002
  9. Duvallet C, Gibbons SM, Gurry T, Irizarry RA, Alm EJ. 2017. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat. Commun. 8: 1-10. https://doi.org/10.1038/s41467-016-0009-6
  10. Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A, Zeller G, et al. 2019. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 25: 679-689. https://doi.org/10.1038/s41591-019-0406-6
  11. Ghosh TS, Das M, Jeffery IB, O'Toole PW. 2020. Adjusting for age improves identification of gut microbiome alterations in multiple diseases. Elife 9: e50240.
  12. Ranjha MMAN, Shafique B, Batool M, Kowalczewski PL, Shehzad Q, Aadil RM, et al. 2021. Nutritional and health potential of probiotics: a review. Appl. Sci. 11: 11204.
  13. Neal-McKinney JM, Lu X, Duong T, Larson CL, Call DR, Shah DH, et al. 2012. Production of organic acids by probiotic lactobacilli can be used to reduce pathogen load in poultry. PLoS One 7: e43928.
  14. Scholz-Ahrens KE, Ade P, Marten B, Weber P, Timm W, Schrezenmeir J. 2007. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J. Nutr. 137: 838S-846S. https://doi.org/10.1093/jn/137.3.838S
  15. Barry S, James D. 1981. Role of gastric acid in food iron absorption. Gastroenterology 81: 1068-1071. https://doi.org/10.1016/s0016-5085(81)80013-3
  16. Wadher KJ, Mahore JG, Umekar MJ. 2010. Probiotics: Living medicines in health maintenance and disease prevention. Int. J. Pharma Bio. Sci. 3: 1-9.
  17. Soetan KO, Olaiya CO, Oyewole OE. 2010. The importance of mineral elements for humans, domestic animals and plants-A review. Afr. J. Food Sci. 4: 200-222.
  18. Makariou S, Liberopoulos EN, Elisaf M, Challa A. 2011. Novel roles of vitamin D in disease: what is new in 2011?. Eur. J. Int. Med. 22: 355-362. https://doi.org/10.1016/j.ejim.2011.04.012
  19. Carr AC, Maggini S. 2017. Vitamin C and immune function. Nutrients 9: 1211.
  20. Wintergerst ES, Maggini S, Hornig DH. 2007. Contribution of selected vitamins and trace elements to immune function. Ann. Nutr. Metab. 51: 301-323. https://doi.org/10.1159/000107673
  21. Stevens SL. 2021. Fat-soluble vitamins. Nursing Clin. 56: 33-45.
  22. Chawla J, Kvarnberg D. 2014. Hydrosoluble vitamins. Handb. Clin. Neurol. 120: 891-914. https://doi.org/10.1016/B978-0-7020-4087-0.00059-0
  23. Depeint F, Bruce WR, Shangari N, Mehta R, O'Brien PJ. 2006. Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolism. Chem. Biol. Interact. 163: 94-112. https://doi.org/10.1016/j.cbi.2006.04.014
  24. Traber MG, Stevens JF. 2011. Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic. Biol. Med. 51: 1000-1013. https://doi.org/10.1016/j.freeradbiomed.2011.05.017
  25. Dubey MR, Patel VP. 2018. Probiotics: A promising tool for calcium absorption. Open Nutr. J. 12: 59-69. https://doi.org/10.2174/1874288201812010059
  26. Said HM, Mohammed ZM. 2006. Intestinal absorption of water-soluble vitamins: an update. Curr. Opin. Gastroenterol. 22: 140-146. https://doi.org/10.1097/01.mog.0000203870.22706.52
  27. Eck P, Friel J. 2013. Should probiotics be considered as vitamin supplements. Gastroenterology 138: 789-791.
  28. LeBlanc JG, Laino JE, del Valle MJ, de Giori GS, Sesma F, Taranto MP. 2015. B-group vitamins production by probiotic lactic acid bacteria. Biotechnology of lactic acid bacteria. pp. 279-296. Novel Application 2nd Ed.
  29. Ballini A, Gnoni A, De Vito D, Dipalma G, Cantore S, Gargiulo Isacco C, Inchingolo F, et al. 2019. Effect of probiotics on the occurrence of nutrition absorption capacities in healthy children: A randomized double-blinded placebo-controlled pilot study. Eur. Rev. Med. Pharmacol. Sci. 23: 8645-8657.
  30. Jones ML, Martoni CJ, Prakash S. 2013. Oral supplementation with probiotic L. reuteri NCIMB 30242 increases mean circulating 25-hydroxyvitamin D: a post hoc analysis of a randomized controlled trial. J. Clin. Endocrinol. Metab. 98: 2944-2951. https://doi.org/10.1210/jc.2012-4262
  31. Said HM. 2011. Intestinal absorption of water-soluble vitamins in health and disease. Biochem. J. 437: 357-372. https://doi.org/10.1042/BJ20110326
  32. Lim TJ, Lim S, Yoon JH, Chung MJ. 2021. Effects of multi-species probiotic supplementation on alcohol metabolism in rats. J. Microbiol. 59: 417-425. https://doi.org/10.1007/s12275-021-0573-2
  33. Lee YS, Kang EY, Park MN, Choi YY, Jeon JW, Yun SS. 2008. Effects of sn-2 palmitic acid-fortified vegetable oil and fructooligosaccharide on calcium metabolism in growing rats fed casein based diet. Nutr. Res. Prac. 2: 3-7. https://doi.org/10.4162/nrp.2008.2.1.3
  34. Sardesai VM. 1995. Role of antioxidants in health maintenance. Nutr. Clin. Prac. 10: 19-25. https://doi.org/10.1177/011542659501000119
  35. Zhong H, Chen K, Feng M, Shao W, Wu J, Chen K, et al. 2018. Genipin alleviates high-fat diet-induced hyperlipidemia and hepatic lipid accumulation in mice via miR-142a-5p/SREBP-1c axis. FEBS J. 285: 501-517. https://doi.org/10.1111/febs.14349
  36. Lasker S, Rahman MM, Parvez F, Zamila M, Miah P, Nahar K, et al. 2019. High-fat diet-induced metabolic syndrome and oxidative stress in obese rats are ameliorated by yogurt supplementation. Sci. Rep. 9: 20026.
  37. Sun Y, Wang Y, Song P, Wang H, Xu N, Wang Y, et al. 2019. Antiobesity effects of instant fermented teas in vitro and in mice with high-fat-diet-induced obesity. Food Funct. 10: 3502-3513. https://doi.org/10.1039/C9FO00162J
  38. Slykerman RF, Hood F, Wickens K, Thompson JMD, Barthow C, Murpy R, et al. 2017. Effect of Lactobacillus rhamnosus HN001 in pregnancy on postpartum symptoms of depression and anxiety: A randomised double-blind placebo-controlled trial. EBioMedicine 24: 159-165. https://doi.org/10.1016/j.ebiom.2017.09.013
  39. Kruger MC, Fear A, Chua WH, Plimmer GG, Schollum LM. 2009. The effect of Lactobacillus rhamnosus HN001 on mineral absorption and bone health in growing male and ovariectomised female rats. Dairy Sci. Technol. 89: 219-231. https://doi.org/10.1051/dst/2009012
  40. Gao D, Liu Z, Liu F, Chen L, Wang W, Hou J, et al. 2021. Study of the immunoregulatory effect of Lactobacillus rhamnosus 1.0320 in immunosuppressed mice. J. Funct. Foods 79: 104423.
  41. Yeo S, Park H, Seo E, Kim J, Kim BK, Choi IS, et al. 2020. Anti-inflammatory and gut microbiota modulatory effect of Lactobacillus rhamnosus strain LDTM 7511 in a dextran sulfate sodium-induced colitis murine model. Microorganisms 8: 845.
  42. An BC, Hong S, Park HJ, Kim BK, Ahn JY, Ryu Y, Chung MJ. 2019. Anti-colorectal cancer effects of probiotic-derived p8 protein. Genes 10: 624.
  43. Kim BK, Yoon YS, Ryu Y, Chung MJ. 2021. Probiotic-derived P8 protein induce apoptosis via regulation of RNF152 in colorectal cancer cells. Am. J. Cancer Res. 11: 746.
  44. Orlando A, Linsalata M, Russo F. 2016. Antiproliferative effects on colon adenocarcinoma cells induced by co-administration of vitamin K1 and Lactobacillus rhamnosus GG. Int. J. Oncol. 48: 2629-2638. https://doi.org/10.3892/ijo.2016.3463
  45. Jerzynska J, Stelmach W, Balcerak J, Woicka-Kolejwa K, Rychlik B, Stelmach I, et al. 2016. Effect of Lactobacillus rhamnosus GG and vitamin D supplementation on the immunologic effectiveness of grass-specific sublingual immunotherapy in children with allergy. Allergy Asthma Proc. 37: 324-334. https://doi.org/10.2500/aap.2016.37.3958
  46. Filipovic I, Ostojic O, Vekovic V, Lackovic M, Zivkovic Z. 2020. Combination of Lactobacillus Rhamnosus LGG, vitamin D3 and Zn in preventing atopic dermatitis in infancy. Am. J. Pediatrics 6: 280-284.
  47. Garaiova I, Muchova J, Nagyova Z, Wang D, Li JV, Durackova Z, et al. 2015. Probiotics and vitamin C for the prevention of respiratory tract infections in children attending preschool: a randomised controlled pilot study. Eur. J. Clin. Nutr. 69: 373-379. https://doi.org/10.1038/ejcn.2014.174
  48. Montorsi F, Gandaglia G, Salonia A, Briganti A, Mirone V, Montorsi F. 2016. Effectiveness of a combination of cranberries, Lactobacillus rhamnosus, and vitamin C for the management of recurrent urinary tract infections in women: results of a pilot study. Eur. Urol. 70: 912-915. https://doi.org/10.1016/j.eururo.2016.05.042
  49. Bonfrate L, Di Palo DM, Celano G, Albert A, Vitellio P, Portincasa P. et al. 2020. Effects of Bifidobacterium longum BB536 and Lactobacillus rhamnosus HN001 in IBS patients. Eur. J. Clin. Investig. 50: e13201.
  50. Kumari M, Bhushan B, Kokkiligadda A, Kumar V, Behare P, Tomar SK. 2021. Vitamin B12 biofortification of soymilk through optimized fermentation with extracellular B12 producing Lactobacillus isolates of human fecal origin. Curr. Res. Food Sci. 4: 646-654. https://doi.org/10.1016/j.crfs.2021.09.003
  51. Duru IC, Laine P, Andreevskaya M, Paulin L, Kananen S, Tynkkynen S, et al. 2018. Metagenomic and metatranscriptomic analysis of the microbial community in Swiss-type Maasdam cheese during ripening. Int. J. Food Microbiol. 281: 10-22. https://doi.org/10.1016/j.ijfoodmicro.2018.05.017
  52. Carrizo SL, Montes de Oca CE, Laino JE, Suarez NE, Vignolo G, LeBlanc JG, et al. 2016. Ancestral Andean grain quinoa as source of lactic acid bacteria capable to degrade phytate and produce B-group vitamins. Food Res. Int. 89: 488-494. https://doi.org/10.1016/j.foodres.2016.08.013
  53. Linares D, Michaud P, Delort AM, Traikia M, Warrand J. 2011. Catabolism of L-ascorbate by Lactobacillus rhamnosus GG. J. Agric. Food Chem. 59: 4140-4147. https://doi.org/10.1021/jf104343r
  54. Znamirowska A, Szajnar K, Pawlos M. 2021. Effect of vitamin C source on its stability during storage and the properties of milk fermented by Lactobacillus rhamnosus. Molecules 26: 6187.
  55. Chawafambira A, Sedibe MM, Mpofu A, Achilonu MC. 2020. The potential of Uapaca kirkiana fruit jam for the delivery of Lactobacillus rhamnosus yoba as a probiotic food. Afr. J. Food Agric. Nutr. Dev. 20: 16161-16177.
  56. Yadav S, Jha R. 2019. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J. Anim. Sci. Biotechnol. 10: 2.
  57. Corcionivoschi N, Drinceanu D, Pop IM, Stack D, Stef L, Julean C, et al. 2010. The effect of probiotics on animal health. Anim. Sci. Biotechnol. 43: 35-41.
  58. Tavares M, Dias JA. 2017. Long-term effects of achlorhydria on the stomach (Helicobacter pylori and PPI therapy). In Esophageal and Gastric Disorders in Infancy and Childhood. pp. 1387-1395.
  59. Bering S, Suchdev S, Sjoltov L, Berggren A, Tetens I, Bukhave K. 2006. A lactic acid-fermented oat gruel increases non-haem iron absorption from a phytate-rich meal in healthy women of childbearing age. Br. J. Nutr. 96: 80-85. https://doi.org/10.1079/BJN20061683
  60. Sandberg AS, Onning G, Engstrom N, Scheers N. 2018. Iron supplements containing lactobacillus plantarum 299v increase ferric iron and up-regulate the ferric reductase DCYTB in human caco2/HT29 MTX Co-cultures. Nutrients 10: 1949.
  61. Vonderheid SC, Tussing-Humphreys L, Park C, Pauls H, OjiNjideka Hemphill N, LaBomascus B, et al. 2019. A systematic review and meta-analysis on the effects of probiotic species on iron absorption and iron status. Nutrients 11: 2938.