• Title/Summary/Keyword: interval chart

Search Result 118, Processing Time 0.03 seconds

Optimal Design of c Control Chart using Variable Sampling Interval (가변추출간격을 이용한 c 관리도의 최적설계)

  • Park, Joo-Young
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.2
    • /
    • pp.215-233
    • /
    • 2007
  • Even though the ad hoc Shewhart methods remain controversial due to various mathematical flaws, there is little disagreement among researchers and practitioners when a set of process data has a skewness distribution. In the context and language of process control, the error related to the process data shows that time to signal increases when a control parameter shifts to a skewness direction. In real-world industrial settings, however, quality practitioners often need to consider a skewness distribution. To address this situation, we developed an enhanced design method to utilize advantages of the traditional attribute control chart and to overcome its associated shortcomings. The proposed design method minimizes bias, i.e., an average time to signal for the shift of process from the target value (ATS) curve, as well as it applies a variable sampling interval (VSI) method to an attribute control chart for detecting a process shift efficiently. The results of the factorial experiment obtained by various parameter circumstances show that the VSI c control chart using nearly unbiased ATS design provides the smallest decreasing rate in ATS among other charts for all experimental cases.

Comparison of EWMA and CUSUM Charts with Variable Sampling Intervals for Monitoring Variance-Covariance Matrix

  • Chang, Duk-Joon
    • Journal of Integrative Natural Science
    • /
    • v.13 no.4
    • /
    • pp.152-157
    • /
    • 2020
  • To monitor all elements simultaneously of variance-covariance matrix Σ of several correlated quality characteristics under multivariate normal process Np($\underline{\mu}$, Σ), multivariate exponentially weighted moving average (EWMA) chart and cumulative sum (CUSUM) chart are considered and compared. Numerical performances of the considered variable sampling interval (VSI) charts are evaluated using average run length (ARL), average time to signal (ATS), average number of switches (ANSW) to signal, and the probability of switch Pr(switch) between two sampling interval d1 and d2 where d1 < d2. For small or moderate changes of Σ, the performances of multivariate EWMA chart is approximately equivalent to that of multivariate CUSUM chart.

두 개의 이상원인을 고려한 VSSI $\bar{X}$ 관리도의 통계적 특성

  • 이호중;임태진
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2004.04a
    • /
    • pp.64-69
    • /
    • 2004
  • This research investigates statistical characteristics of variable sampling size & interval(VSSI) X charts under two assignable causes. Algorithms for calculating the average run length(ARL) and average time to signal(ATS) of the VSSI X chart are proposed by employing Markov chain method. Extensive sensitivity analysis shows that the VSSI. X chart is superior to the VSS or VSI X chart as well as to the Shewhart X chart in statistical sense, even under two assignable causes.

  • PDF

Statistical Efficiency of VSSI $\bar{X}$ Control Charts for the Process with Two Assignable Causes (두 개의 이상원인이 존재하는 공정에 대한 VSSI $\bar{X}$ 관리도의 통계적 효율성)

  • Lee Ho-Jung;Lim Tae-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.4
    • /
    • pp.156-168
    • /
    • 2004
  • This research investigates the statistical efficiency of variable sampling size & sampling interval(VSSI) $\bar{X}$ charts under two assignable causes. Algorithms for calculating the average run length(ARL) and average time to signal(ATS) of the VSSI $\bar{X}$ chart are proposed by employing Markov chain method. States of the process are defined according to the process characteristics after the occurrence of an assignable cause. Transition probabilities are carefully derived from the state definition. Statistical properties of the proposed chart are also investigated. A simple procedure for designing the proposed chart is presented based on the properties. Extensive sensitivity analyses show that the VSSI $\bar{X}$ chart is superior to the VSS or VSI $\bar{X}$ chart as well as to the Shewhart $\bar{X}$ chart in statistical sense, even tinder two assignable causes.

Multivariate $T^2$ Variable Interval Control Chart with Sampling at Fixed Times (고정표본채취시점을 갖는 가변표본채취간격 다변량 $T^2$관리도)

  • Chang Young Soon;Bai Do Sun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.767-771
    • /
    • 2002
  • This paper proposes a multivariate $T^2$ variable interval control chart with sampling at fixed times, where samples are taken at specified equally spared fixed time points, and additional samples are allowed between these fixed times when indicated by the preceding $T^2$ statistics. At fixed sampling tunes, the $T^2$ statistics are composed of all quality characteristics, and a part of qualify characteristics are selected to obtain $T^2$ statistics at additional sampling times. A Markov chain approach is used to evaluate the performance of the proposed chart.

  • PDF

A Comparative Analysis on the Efficiency of Monitoring between EWMA and Shewhart Chart in Instrumental Process with Autocorrelation (자기상관이 있는 장치 공정에서 EWMA와 Shewhart 관리도와의 모니터링 효율성 비교 분석)

  • Cho, Jin-Hyung;Oh, Hyun-Seung;Lee, Sae-Jae;Jung, Su-Il;Lim, Taek;Baek, Seong-Seon;Kim, Byung-Keug
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.4
    • /
    • pp.118-125
    • /
    • 2012
  • When monitoring an instrumental process, one often collects a host of data such as characteristic signals sent by a sensor in short time intervals. Characteristic data of short time intervals tend to be autocorrelated. In the instrumental processes often the practice of adjusting the setting value simply based on the previous one, so-called 'adjacent point operation', becomes more critical, since in the short run the deviations are harder to detect and in the long run they have amplified consequences. Stochastic modelling using ARIMA or AR models are not readily usable here. Due to the difficulty of dealing with autocorrelated data conventional practice is resorting to choosing the time interval where autocorrelation is weak enough then to using I-MR control chart to judge the process stability. In the autocorrelated instrumental processes it appears that using the Shewhart chart and the time interval data where autocorrelation is relatively not existent turns out to be a rather convenient and very useful practice to determine the process stability. However in the autocorrelated instrumental processes we intend to show that one would presumably do better using the EWMA control chart rather than just using the Shewhart chart along with some arbitrarily intervalled data, since the former is more sensitive to shifts given appropriate weights.

Interpretation of Quality Statistics Using Sampling Error (샘플링오차에 의한 품질통계 모형의 해석)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.2
    • /
    • pp.205-210
    • /
    • 2008
  • The research interprets the principles of sampling error design for quality statistics models such as hypothesis test, interval estimation, control charts and acceptance sampling. Introducing the proper discussions of the design of significance level according to the use of hypothesis test, then it presents two methods to interpret significance by Neyman-Pearson and Fisher. Second point of the study proposes the design of confidence level for interval estimation by Bayesian confidence set, frequentist confidential set and fiducial interval. Third, the content also indicates the design of type I error and type II error considering both productivity and customer claim for control chart. Finally, the study reflects the design of producer's risk with operating charistictics curve, screening and switch rules for the purpose of purchasing and subcontraction.

A Headache Diagnosis Method Using an Aggregate Operator

  • Ahn, Jeong-Yong;Choi, Kyung-Ho;Park, Jeong-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.359-365
    • /
    • 2012
  • The fuzzy set framework has a number of properties that make it suitable to formulize uncertain information in medical diagnosis. This study introduces a fuzzy diagnostic method based on the interval-valued interview chart and the interval-valued intuitionistic fuzzy weighted arithmetic average(IIFWAA) operator. An issue in the use of the IIFWAA operator is to determine the weights. In this study, we propose the occurrence information of symptoms as the weights. An illustrative example is provided to demonstrate its practicality and effectiveness.

Variable Sampling Interval Control Charts for Number of Defectives

  • Cho, Gyo-Young;Ahn, Young-Seon;Kim, Youn-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.25 no.3
    • /
    • pp.62-73
    • /
    • 1997
  • Previous VSI control chart works have been done on quality variable whose distribution is normal. But there are many situations in which hte assumption of not a, pp.opriate. Also, in many industrial processes, the interest is to monitor the number of defectives. In this paper, we will take the existing properties of VSI control chart developed for the normal distribution and a, pp.y them to the np-chart based on the discrete binomial distribution. We will consider the CUSUM chart for the number of defectives. Here, the interesting object is to compute the VSI ATS for CUSUM control chart using Markov chain a, pp.oach and to compare FSI ATS and VSI ATS.

  • PDF

Economic Design of a Moving Average Control Chart with Multiple Assignable Causes when Two Failures Occur

  • Cben, Yun-Shiow;Yu, Fong-Jung
    • International Journal of Quality Innovation
    • /
    • v.2 no.1
    • /
    • pp.69-86
    • /
    • 2001
  • The economic design of control charts has been researched for over four decades since Duncan proposed the concept in 1956. Few studies, however, have focused attention on the economic design of a moving average (MA) control chart. An MA control chart is more effective than the Shewhart chart in detecting small process shifts [9]. This paper provides an economic model for determining the optimal parameters of an MA control chart with multiple assignable causes and two failures in the production process. These parameters consist of the sample size, the spread of the control limit and the sampling interval. A numerical example is shown and the sensitivity analysis shows that the magnitude of shift, rate of occurrence of assignable causes and increasing cost when the process is out of control have a more significant effect on the loss cost, meaning that one should more carefully estimate these values when conducting an economic analysis.

  • PDF