• Title/Summary/Keyword: interval

Search Result 11,726, Processing Time 0.033 seconds

INTERVAL VALUED MARTINGALES

  • Mok, Jin-Sik
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.1
    • /
    • pp.273-277
    • /
    • 1999
  • In this paper we will consider interval-valued martin-gales. We obtain several results parallel to the case of real-valued martingales. For example an $L_1$-bounded interval-valued martingale converges a.e. An interval-valued martingale ${{F_n}^\infty}_{n=1}$ is uniformly in-tegrable if and only if there is an interval-valued random variable F with $\parallel F \parallel _1<\infty$ such that $F_n=E(F\mid A_n)$, for all $n\geq 1$

On comonotonically additive interval-valued functionals and interval-valued hoquet integrals(I) (보단조 가법 구간치 범함수와 구간치 쇼케이적분에 관한 연구(I))

  • Lee, Chae-Jang;Kim, Tae-Kyun;Jeon, Jong-Duek
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.9-13
    • /
    • 2003
  • In this paper, we will define comonotonically additive interval-valued functionals which are generalized comonotonically additive real-valued functionals in Shcmeildler[14] and Narukawa[12], and study some properties of them. And we also investigate some relations between comonotonically additive interval-valued functionals and interval-valued Choquet integrals on a suitable function space cf.[19,10,11,13].

  • PDF

Intuitionistic Interval-Valued Fuzzy Sets

  • Cheong, Min-Seok;Hur, Kul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.864-874
    • /
    • 2010
  • We introduce the notion of intuitionistic interval-valued fuzzy sets as the another generalization of interval-valued fuzzy sets and intuitionistic fuzzy sets and hence fuzzy sets. Also we introduce some operations over intuitionistic interval-valued fuzzy sets. And we study some fundamental properties of intuitionistic interval-valued fuzzy sets and operations.

ON INTERVAL VALUED (${\alpha}$, ${\beta}$)-FUZZY IDEA OF HEMIRINGS

  • Shabir, Muhammad;Mahmood, Tahir
    • East Asian mathematical journal
    • /
    • v.27 no.3
    • /
    • pp.349-372
    • /
    • 2011
  • In this paper we define interval valued (${\in}$, ${\in}{\vee}q$)-fuzzy hquasi-ideals, interval valued (${\in}$, ${\in}{\vee}q$)-fuzzy h-bi-ideals, interval valued ($\bar{\in}$, $\bar{\in}{\vee}\bar{q}$)-fuzzy h-ideals, interval valued ($\bar{\in}$, $\bar{\in}{\vee}\bar{q}$)-fuzzy h-quasi-ideals, interval valued ($\bar{\in}$, $\bar{\in}{\vee}\bar{q}$)-fuzzy h-bi-ideals and characterize different classes of hemirings by the properties of these ideals.

Interval-valued Fuzzy Soft Sets

  • Son, Mi-Jung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.557-562
    • /
    • 2007
  • This paper extends the work of Maji et al. (2001) to present the concept of interval-valued fuzzy soft sets and to present an algorithm for finding where the degree of membership are represented by interval values in [0, 1]. The proposed method is more flexible than the one presented in Maji et at. (2001) due to the fact that it allows the degrees of membership of object for parameters to be represented by interval-values rather than crisp real values between zero and one.

Optimality of Interval Caching Policies in Multimedia Streaming Systems

  • Cho, Kyungwoon;Bahn, Hyokyung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.31-36
    • /
    • 2022
  • Interval caching is one of the representative caching strategies used in multimedia streaming systems. However, there has been no theoretical analysis on interval caching. In this paper, we present an optimality proof of the interval caching policy. Specifically, we propose a caching performance model for multimedia streaming systems and show the optimality of the interval caching policy based on this model.

Lattices of Interval-Valued Fuzzy Subgroups

  • Lee, Jeong Gon;Hur, Kul;Lim, Pyung Ki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.154-161
    • /
    • 2014
  • We discuss some interesting sublattices of interval-valued fuzzy subgroups. In our main result, we consider the set of all interval-valued fuzzy normal subgroups with finite range that attain the same value at the identity element of the group. We then prove that this set forms a modular sublattice of the lattice of interval-valued fuzzy subgroups. In fact, this is an interval-valued fuzzy version of a well-known result from classical lattice theory. Finally, we employ a lattice diagram to exhibit the interrelationship among these sublattices.

INTERVAL-VALUED FUZZY GENERALIZED BI-IDEALS OF A SEMIGROUP

  • Lee, Keon-Chang;Kang, Hee-Won;Hur, Kul
    • Honam Mathematical Journal
    • /
    • v.33 no.4
    • /
    • pp.603-616
    • /
    • 2011
  • We introduce the concept of an interval-valued fuzzy generalized bi-ideal of a semigroup, which is an extension of the concept of an interval-valued fuzzy bi-ideal (and of a noninterval-valued fuzzy bi-ideal and a noninterval-valued fuzzy ideal of a semi-group), and characterize regular semigroups, and both intraregular and left quasiregular semigroup in terms of interval-valued fuzzy generalized bi-ideals.

Intuitionistic Interval-Valued Fuzzy Topological Spaces

  • Lim, Pyung-Ki;Kim, Sun-Ho;Hur, Kul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.126-134
    • /
    • 2012
  • By using the concept of intuitionistic interval-valued fuzzy sets, we introduce the notion of intuitionistic interval-valued fuzzy topology. And we study some fundamental properties of intuitionistic interval-valued fuzzy topological spaces: First, we obtain analogues[see Theorem 3.11 and 3.12] of neighborhood systems in ordinary topological spaces. Second, we obtain the result[see Theorem 4.9] corresponding to "the 14-set Theorem" in ordinary topological spaces. Finally, we give the initial structure on intuitionistic interval-valued fuzzy topologies[see Theorem 5.9].

Estimation in the exponential distribution under progressive Type I interval censoring with semi-missing data

  • Shin, Hyejung;Lee, Kwangho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1271-1277
    • /
    • 2012
  • In this paper, we propose an estimation method of the parameter in an exponential distribution based on a progressive Type I interval censored sample with semi-missing observation. The maximum likelihood estimator (MLE) of the parameter in the exponential distribution cannot be obtained explicitly because the intervals are not equal in length under the progressive Type I interval censored sample with semi-missing data. To obtain the MLE of the parameter for the sampling scheme, we propose a method by which progressive Type I interval censored sample with semi-missing data is converted to the progressive Type II interval censored sample. Consequently, the estimation procedures in the progressive Type II interval censored sample can be applied and we obtain the MLE of the parameter and survival function. It will be shown that the obtained estimators have good performance in terms of the mean square error (MSE) and mean integrated square error (MISE).