• Title/Summary/Keyword: intersection detection

Search Result 157, Processing Time 0.031 seconds

Conflict Detection for Multi-agent Motion Planning using Mathematical Analysis of Extended Collision Map (확장충돌맵의 수학적 분석을 이용한 다개체의 충돌탐지)

  • Yoon, Y.H.;Choi, J.S.;Lee, B.H.
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.3
    • /
    • pp.234-241
    • /
    • 2007
  • Effective tools which can alleviate the complexity and computational load problem in collision-free motion planning for multi-agent system have steadily been demanded in robotics field. To reduce the complexity, the extended collision map (ECM) which adopts decoupled approach and prioritization is already proposed. In ECM, the collision regions which represent the potential collision of robots are calculated using the computational power; the complexity problem is not resolved completely. In this paper, we propose a mathematical analysis of the extended collision map; as a result, we formulate the collision region as an equation with 5-8 variables. For mathematical analysis, we introduce realistic assumptions as follows; the path of each robot can be approximated to a straight line or an arc and every robot moves with uniform velocity or constant acceleration near the intersection between paths. Our result reduces the computational complexity in comparison with the previous result without losing optimality, because we use simple but exact equations of the collision regions. This result can be widely applicable to coordinated multi-agent motion planning.

  • PDF

A Moving Object Tracking System from a Moving Camera by Integration of Motion Estimation and Double Difference (BBME와 DD를 통합한 움직이는 카메라로부터의 이동물체 추적 시스템)

  • 설성욱;송진기;장지혜;이철헌;남기곤
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.173-181
    • /
    • 2004
  • In this paper, we propose a system for automatic moving object detection and tracking in sequence images acquired from a moving camera. The proposed algorithm consists of moving object detection and its tracking. Moving object can be detected by integration of BBME and DD method We segment the detected object using histogram back projection, match it using histogram intersection, extract and track it using XY-projection. Computer simulation results have shown that the proposed algorithm is reliable and can successfully detect and track a moving object on image sequences obtained by a moving camera.

Automatic assessment of post-earthquake buildings based on multi-task deep learning with auxiliary tasks

  • Zhihang Li;Huamei Zhu;Mengqi Huang;Pengxuan Ji;Hongyu Huang;Qianbing Zhang
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.383-392
    • /
    • 2023
  • Post-earthquake building condition assessment is crucial for subsequent rescue and remediation and can be automated by emerging computer vision and deep learning technologies. This study is based on an endeavour for the 2nd International Competition of Structural Health Monitoring (IC-SHM 2021). The task package includes five image segmentation objectives - defects (crack/spall/rebar exposure), structural component, and damage state. The structural component and damage state tasks are identified as the priority that can form actionable decisions. A multi-task Convolutional Neural Network (CNN) is proposed to conduct the two major tasks simultaneously. The rest 3 sub-tasks (spall/crack/rebar exposure) were incorporated as auxiliary tasks. By synchronously learning defect information (spall/crack/rebar exposure), the multi-task CNN model outperforms the counterpart single-task models in recognizing structural components and estimating damage states. Particularly, the pixel-level damage state estimation witnesses a mIoU (mean intersection over union) improvement from 0.5855 to 0.6374. For the defect detection tasks, rebar exposure is omitted due to the extremely biased sample distribution. The segmentations of crack and spall are automated by single-task U-Net but with extra efforts to resample the provided data. The segmentation of small objects (spall and crack) benefits from the resampling method, with a substantial IoU increment of nearly 10%.

Deep Learning for Weeds' Growth Point Detection based on U-Net

  • Arsa, Dewa Made Sri;Lee, Jonghoon;Won, Okjae;Kim, Hyongsuk
    • Smart Media Journal
    • /
    • v.11 no.7
    • /
    • pp.94-103
    • /
    • 2022
  • Weeds bring disadvantages to crops since they can damage them, and a clean treatment with less pollution and contamination should be developed. Artificial intelligence gives new hope to agriculture to achieve smart farming. This study delivers an automated weeds growth point detection using deep learning. This study proposes a combination of semantic graphics for generating data annotation and U-Net with pre-trained deep learning as a backbone for locating the growth point of the weeds on the given field scene. The dataset was collected from an actual field. We measured the intersection over union, f1-score, precision, and recall to evaluate our method. Moreover, Mobilenet V2 was chosen as the backbone and compared with Resnet 34. The results showed that the proposed method was accurate enough to detect the growth point and handle the brightness variation. The best performance was achieved by Mobilenet V2 as a backbone with IoU 96.81%, precision 97.77%, recall 98.97%, and f1-score 97.30%.

Hough Transform-based Semi-automatic Vertex Detection Algorithm on a Touch Screen Mobile Phone (모바일 폰 터치스크린에서 허프변환 기반의 반자동식 정점 검출 알고리즘)

  • Jang, Young-Kyoon;Woo, Woon-Tack
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.5
    • /
    • pp.596-600
    • /
    • 2010
  • This paper proposes hough transform-based semi-automatic vertex detection algorithm for object modeling on a mobile phone supporting touch-screens. The proposed algorithm shows fast processing time by searching the limited range of parameters for computing hough transform with a small range of ROI image. Moreover, the proposed algorithm removes bad candidates among the detected lines by selecting the two closest candidate lines from the position of user's input. After that, it accurately detects an interesting vertex without additionally required interactions by detecting an intersection point of the two lines. As a result, we believe that the proposed algorithm shows a 1.4 pixel distance error on average as a vertex detection accuracy under such conditions as a 5.7 pixel distance error on average as an inaccurate input.

Interactive Colision Detection for Deformable Models using Streaming AABBs

  • Zhang, Xinyu;Kim, Young-J.
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02c
    • /
    • pp.306-317
    • /
    • 2007
  • We present an interactive and accurate collision detection algorithm for deformable, polygonal objects based on the streaming computational model. Our algorithm can detect all possible pairwise primitive-level intersections between two severely deforming models at highly interactive rates. In our streaming computational model, we consider a set of axis aligned bounding boxes (AABBs) that bound each of the given deformable objects as an input stream and perform massively-parallel pairwise, overlapping tests onto the incoming streams. As a result, we are able to prevent performance stalls in the streaming pipeline that can be caused by expensive indexing mechanism required by bounding volume hierarchy-based streaming algorithms. At run-time, as the underlying models deform over time, we employ a novel, streaming algorithm to update the geometric changes in the AABB streams. Moreover, in order to get only the computed result (i.e., collision results between AABBs) without reading back the entire output streams, we propose a streaming en/decoding strategy that can be performed in a hierarchical fashion. After determining overlapped AABBs, we perform a primitive-level (e.g., triangle) intersection checking on a serial computational model such as CPUs. We implemented the entire pipeline of our algorithm using off-the-shelf graphics processors (GPUs), such as nVIDIA GeForce 7800 GTX, for streaming computations, and Intel Dual Core 3.4G processors for serial computations. We benchmarked our algorithm with different models of varying complexities, ranging from 15K up to 50K triangles, under various deformation motions, and the timings were obtained as 30~100 FPS depending on the complexity of models and their relative configurations. Finally, we made comparisons with a well-known GPU-based collision detection algorithm, CULLIDE [4] and observed about three times performance improvement over the earlier approach. We also made comparisons with a SW-based AABB culling algorithm [2] and observed about two times improvement.

  • PDF

A hierarchical semantic segmentation framework for computer vision-based bridge damage detection

  • Jingxiao Liu;Yujie Wei ;Bingqing Chen;Hae Young Noh
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.325-334
    • /
    • 2023
  • Computer vision-based damage detection enables non-contact, efficient and low-cost bridge health monitoring, which reduces the need for labor-intensive manual inspection or that for a large number of on-site sensing instruments. By leveraging recent semantic segmentation approaches, we can detect regions of critical structural components and identify damages at pixel level on images. However, existing methods perform poorly when detecting small and thin damages (e.g., cracks); the problem is exacerbated by imbalanced samples. To this end, we incorporate domain knowledge to introduce a hierarchical semantic segmentation framework that imposes a hierarchical semantic relationship between component categories and damage types. For instance, certain types of concrete cracks are only present on bridge columns, and therefore the noncolumn region may be masked out when detecting such damages. In this way, the damage detection model focuses on extracting features from relevant structural components and avoid those from irrelevant regions. We also utilize multi-scale augmentation to preserve contextual information of each image, without losing the ability to handle small and/or thin damages. In addition, our framework employs an importance sampling, where images with rare components are sampled more often, to address sample imbalance. We evaluated our framework on a public synthetic dataset that consists of 2,000 railway bridges. Our framework achieves a 0.836 mean intersection over union (IoU) for structural component segmentation and a 0.483 mean IoU for damage segmentation. Our results have in total 5% and 18% improvements for the structural component segmentation and damage segmentation tasks, respectively, compared to the best-performing baseline model.

A Content-Based Image Retrieval using Object Segmentation Method (물체 분할 기법을 이용한 내용기반 영상 검색)

  • 송석진;차봉현;김명호;남기곤;이상욱;주재흠
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Various methods have been studying to maintain and apply the multimedia inform abruptly increasing over all social fields, in recent years. For retrieval of still images, we is implemented content-based image retrieval system in this paper that make possible to retrieve similar objects from image database after segmenting query object from background if user request query. Query image is processed median filtering to remove noise first and then object edge is detected it by canny edge detection. And query object is segmented from background by using convex hull. Similarity value can be obtained by means of histogram intersection with database image after securing color histogram from segmented image. Also segmented image is processed gray convert and wavelet transform to extract spacial gray distribution and texture feature. After that, Similarity value can be obtained by means of banded autocorrelogram and energy. Final similar image can be retrieved by adding upper similarity values that it make possible to not only robust in background but also better correct object retrieval by using object segmentation method.

  • PDF

Bistatic reverberation simulation using intersection of scattering cross section between sound source and receiver (음원과 수신기 사이에 교차 산란단면적을 이용한 양상태 잔향음 모의)

  • Oh, Raegeun;Kim, Sunhyo;Son, Su-Uk;Choi, Jee Woong;Park, Joung-Soo;Shin, Changhong;Ahn, Myonghwan;Lee, Bum Jik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.12-22
    • /
    • 2017
  • It is important to predict accurately reverberation level, which is a limiting factor in underwater target detection. Recently, the studies have been expanded from monostatic sonar to bistatic sonar in which source and receivers are separated. To simulate the bistatic reverberation level, the computation processes for propagation, scattering strength, and scattering cross section are different from those in monostatic case and more complex computation processes are required. Although there have been many researches for bistatic reverberation, few studies have assessed the bistatic scattering cross section which is a key factor in simulate reverberation level. In this paper, a new method to estimate the bistatic scattering cross section is suggested, which uses the area of intersection between two circles. Finally, the reverberation levels simulated with the scattering cross section estimated using the method suggested in this paper are compared with those estimated using the methods previously suggested and those measured from an acoustic measurements conducted in May 2013.

Key Frame Extraction and Region Segmentation-based Video Retrieval in Compressed Domain (압축영역에서의 대표프레임 추출 및 영역분할기반 비디오 검색 기법)

  • 강응관;김성주;송호근;최종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9B
    • /
    • pp.1713-1720
    • /
    • 1999
  • This paper presents a new key frame extraction technique, for scene change detection, using the proposed AHIM (Accumulative Histogram Intersection Measure) from the DC image constructed by DCT DC coefficients in the compressed video sequence that is video compression standard such as MPEG. For fast content-based browsing and video retrieval in a video database, we also provide a novel coarse-to-fine video indexing scheme. In the extracted key frame, we perform the region segmentation as a preprocessing. First, the segmented image is projected with the horizontal direction, then we transform the result into a histogram, which is saved as a database index. In the second step, we calculate the moments and change them into a distance value. From the simulation results, the proposed method clearly shows the validity and superiority in respect of computation time and memory space, and that in conjunction with other techniques for indexing, such as color, can provide a powerful framework for image indexing and retrieval.

  • PDF