DOI QR코드

DOI QR Code

Bistatic reverberation simulation using intersection of scattering cross section between sound source and receiver

음원과 수신기 사이에 교차 산란단면적을 이용한 양상태 잔향음 모의

  • 오래근 (한양대학교 해양융합공학과 해양음향연구실) ;
  • 김선효 (한양대학교 해양융합공학과 해양음향연구실) ;
  • 손수욱 (국방과학연구소) ;
  • 최지웅 (한양대학교 해양융합공학과 해양음향연구실) ;
  • 박정수 (국방과학연구소) ;
  • 신창홍 (LIG 넥스원) ;
  • 안명환 (LIG 넥스원) ;
  • 이범직 (대우조선해양)
  • Received : 2016.11.09
  • Accepted : 2017.01.25
  • Published : 2017.01.31

Abstract

It is important to predict accurately reverberation level, which is a limiting factor in underwater target detection. Recently, the studies have been expanded from monostatic sonar to bistatic sonar in which source and receivers are separated. To simulate the bistatic reverberation level, the computation processes for propagation, scattering strength, and scattering cross section are different from those in monostatic case and more complex computation processes are required. Although there have been many researches for bistatic reverberation, few studies have assessed the bistatic scattering cross section which is a key factor in simulate reverberation level. In this paper, a new method to estimate the bistatic scattering cross section is suggested, which uses the area of intersection between two circles. Finally, the reverberation levels simulated with the scattering cross section estimated using the method suggested in this paper are compared with those estimated using the methods previously suggested and those measured from an acoustic measurements conducted in May 2013.

소나 운용에서 잔향음은 수중 표적 탐지의 제한요소이기 때문에 정확한 예측이 중요하다. 최근에는 단상태소나 연구에서 공간적으로 송수신기의 위치가 다른 양상태 소나에 대한 연구로 확장되고 있는 추세이다. 양상태 잔향음을 모의하기 위해서는 양상태 음파전달, 양상태 산란강도 및 산란단면적 등에서 단상태와 다른 복잡한 계산이 요구된다. 전 세계적으로 양상태 잔향음에 대한 연구가 활발하게 진행되고 있지만 잔향음을 예측하는데 중요한 요소인 양상태 산란단면적을 정확하게 계산하는 방법에 대한 연구는 미비하다. 본 논문에서는 거리 독립 환경의 양상태 잔향음모의에서 두 원의 교차되는 면적을 응용하는 새로운 산란단면적 계산 방법을 제안한다. 최종적으로 본 논문의 양상태 산란단면적 계산 방법으로 모의된 잔향음 준위는 기존에 제안되었던 방법들의 예측값과 비교되며 2013년 5월에 수행된 해상 실험의 측정값과 비교를 수행하였다.

Keywords

References

  1. R. J. Urick, Principles of Underwater Sound (McGraw- Hill, New York, 1983), 237-290.
  2. M. Schafer and M. Coran, "Submarine hunting in shallows," in Proc. UDT, MAST and COE Conference, 1-4 (2009).
  3. H. G. Schneider, Vertically bistatic reverberation and the back propagated field with the split step PE, Saclant Undersea Research Ctr. Rept., SR-225 1994.
  4. D. D. Ellis, "A shallow water normal mode reverberation model," J. Acoust. Soc. Am. 97, 2804-2814 (1995). https://doi.org/10.1121/1.411910
  5. C. H. Harrison, "Closed form bistatic reverberation and target echoes with variable bathymetry and sound speed," IEEE J. Oceanic Eng. 30, 660-675 (2003).
  6. K. D. LePage and C. H. Harrison, "Bistatic reverberation benchmarking exercise:BIStaR versus analytic formulas," in Proc. J. Acoust. Soc. Am. 113, 2333-2334 (2003).
  7. R. L. Culver and S. T. McDaniel, "Bistatic ocean surface reverberation simulation," in Proc. IEEE ICASSP, 2, 1453-1456 (1991).
  8. H. Weinberg, "CASS Roots," in Proc. MTS/IEEE Oceans 2000 Conf. Providence, Rhode Island, 1071-1076 (2000).
  9. N. Kim, S. Oh, K. S. Yoon, S. Lee, and J. Na, "Bi-static low-frequency reverberation model in shallow water" (in Korean), J. Acoust. Soc. Kr. 22, 472-481 (2003).
  10. T. Oh, H. La, J. Na, and C. Park, "Mid-frequency bistatic reverberation model" (in Korean), J. Acoust. Soc. Kr. 25, 389-394 (2006).
  11. S. Kim, W. Lee, S. K. You, J. W. Choi, W. Kim, J. S. Park, and K. J. Park, "High-frequency reverberation simulation of high-speed moving source in rangeindependent ocean environment" (in Korean), J. Acoust. Soc. Kr. 32, 104-115 (2013). https://doi.org/10.7776/ASK.2013.32.2.104
  12. S. Oh, S. Cho, D. Kang, and K. Park, "Low-frequency normal mode reverberation model" (in Korean), J. Acoust. Soc. Kr. 34, 184-191 (2015). https://doi.org/10.7776/ASK.2015.34.3.184
  13. J. Park, Y. Choo, K. Lee, and W. Seong, "Long range incoherent seafloor reverberation model based on coupled normal mode method" (in Korean), J. Acoust. Soc. Kr. 35, 243-252 (2016). https://doi.org/10.7776/ASK.2016.35.4.243
  14. Y. Choo, W. Seong, I. Yang, and W. Oh, "Mid frequency band reverberation model development using ray theory and comparison with experimental data" (in Korean), J. Acoust. Soc. Kr. 28, 740-754 (2009).
  15. J. W. Choi and P. H. Dahl, "Measurement and simulation of the channel intensity impulse response for a site in the east China Sea," J. Acoust. Soc. Am. 119, 2677-2685 (2006). https://doi.org/10.1121/1.2189449
  16. H. Cox, "Fundamentals of bistatic active sonar," Underwater Acoustic Data Processing, edited by Y.T. Chan (Springer, Netherlands, 1989).
  17. R. E. Francois and G. R. Garrison, "Sound absorption based on ocean measurements. Part II: Boric acid contribution and equation for total absorption," J. Acoust. Soc. Am. 72, 1879-1890 (1982). https://doi.org/10.1121/1.388673
  18. F. Jensen, W. Kuperman, M. Porter, and H. Schmidt, Computational Ocean Acoustics (American Institute of Physics, New York, 1993), pp. 40-46.
  19. APL-UW, "APL-UW High-frequency ocean environmental acoustic models handbook," APL-UW TR 9407, AEAS 9501, Appl. Physics Lab., University of Washington, Tech. Rep., (1997).
  20. H. La and J. W. Choi, "8-kHz bottom backscattering measurements at low grazing angles in shallow water," J. Acoust. Soc. Am. 127, 160-165 (2010). https://doi.org/10.1121/1.3338987
  21. Y. G. Yoon, C. Lee, J. W. Choi, S. Chom S. Oh, and S. K. Jung, "Measurements of mid-frequency bottom loss in shallow water of the yellow sea" (in Korean), J. Acoust. Soc. Kr. 34, 423-431 (2015). https://doi.org/10.7776/ASK.2015.34.6.423