• 제목/요약/키워드: intersection classification

검색결과 50건 처리시간 0.024초

A Model for Machine Fault Diagnosis based on Mutual Exclusion Theory and Out-of-Distribution Detection

  • Cui, Peng;Luo, Xuan;Liu, Jing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권9호
    • /
    • pp.2927-2941
    • /
    • 2022
  • The primary task of machine fault diagnosis is to judge whether the current state is normal or damaged, so it is a typical binary classification problem with mutual exclusion. Mutually exclusive events and out-of-domain detection have one thing in common: there are two types of data and no intersection. We proposed a fusion model method to improve the accuracy of machine fault diagnosis, which is based on the mutual exclusivity of events and the commonality of out-of-distribution detection, and finally generalized to all binary classification problems. It is reported that the performance of a convolutional neural network (CNN) will decrease as the recognition type increases, so the variational auto-encoder (VAE) is used as the primary model. Two VAE models are used to train the machine's normal and fault sound data. Two reconstruction probabilities will be obtained during the test. The smaller value is transformed into a correction value of another value according to the mutually exclusive characteristics. Finally, the classification result is obtained according to the fusion algorithm. Filtering normal data features from fault data features is proposed, which shields the interference and makes the fault features more prominent. We confirm that good performance improvements have been achieved in the machine fault detection data set, and the results are better than most mainstream models.

좌표 해시 인코더를 활용한 토지피복 분류 모델 (Land Cover Classifier Using Coordinate Hash Encoder)

  • 윤용선;권동재
    • 대한원격탐사학회지
    • /
    • 제39권6_3호
    • /
    • pp.1771-1777
    • /
    • 2023
  • 최근 딥러닝의 발전으로 의미론적 분할을 통한 토지피복 분류 방법들이 제안되고 있다. 그러나 기존의 딥러닝 기반 모델들은 영상 정보만을 이용하기 때문에 시공간적 일관성을 담보할 수 없는 한계점이 있다. 이에 본 연구에서는 좌표 정보를 활용한 토지피복 분류 모델을 제안한다. 먼저 암시적 신경 표현 기법인 다중해상도 해시 인코더를 위경도 좌표계로 확장한 좌표 해시 인코더를 통해 좌표의 특징을 추출하였다. 다음으로 추출된 좌표 특징을 다양한 단계의 U-net 디코더와 결합하는 아키텍처를 제안하였다. 실험 결과, 제안 방법이 약 32% 향상된 분류 정확도를 보였고, 시공간적 일관성이 향상됨을 확인하였다.

GIS를 이용한 도로교통(道路交通)의 최적경로(最適經路) 선정(選定)에 관한 연구 (A Study on the Optimum-Path for Traffic of Road Using GIS)

  • 오명진
    • 대한공간정보학회지
    • /
    • 제5권2호
    • /
    • pp.131-144
    • /
    • 1997
  • 날로 심각해져 가는 교통체증은 교통량에 비해 도로용량이 부족하여 나타나는 현상이나, 도로부족만이 교통체증의 주요 원인이라고 단정지을 수는 없다. 왜냐하면, 도시의 중추적 기능이 도심에 집중되어 있고 교통수요가 시간대별로 고르게 분포되어 있지 않기 때문이다. 이 연구는 개개의 운전자가 원하는 속도를 유지할 수 있는 통행의 질을 평가하는 주행계획에 있어서, 출발지로부터 목적지까지의 경로선택 시, 교통지체가 가장 적게 발생하는 선을 선택한다는 사실에 착안하여, 복잡한 가로망에 대하여 GIS기법을 이용한 경로를 교통량과 토로용량분석의 경로에 따라 가로별, 교차로별로 분석하여 기하급수적으로 증가하는 토로교통수요에 따라 시시각각 변모하는 토로, 교통, 운전자특성파악에 접근하고자 하며, 또한 가로별, 교차로별로 인접한 교통유발구역에 대한 분석과 같은 네트웍으로 시간당, 일주일의 하루 및 즉시 분류를 다양한 조건하에서 발생하는 교통지체경향에 대한 실제적 최적경로를 획득하고자 하며, 차후 최적경로 선택에 따른 교통의 원활한 배분을 통해 도로이용의 효율성 증대라는 결과를 기대하고, 따라서 교통량 대 도로용량과의 비에 따른 구간분석을 통하여 도로의 확장 및 확충의 적정시기를 결정하는데 있어서 과학적, 객관적이며 타당한 근거를 마련하고자 한다.

  • PDF

칼라 영상 객체 분할을 이용한 게임 콘텐츠 분류 서비스 방안에 관한 연구 (A Study on Game Contents Classification Service Method using Image Region Segmentation)

  • 박창민
    • 서비스연구
    • /
    • 제5권2호
    • /
    • pp.103-110
    • /
    • 2015
  • 최근, 3D FPS 게임에서 캐릭터의 분류는 매우 중요한 문제로 떠오르고 있다. 본 연구에서는 간단한 조작으로 의미객체의 화상 영역 분할을 이용한 게임 콘텐츠 분류 방법을 제안한다. 이 방법에서는, 우선 비선형 RGB 컬러 모델과 컬러양자화 방식을 사용했다. 입력 화상은 20개 미만 양자화 된 색을 표현하고 의미 있는 적은 수의 컬러 히스토그램을 사용한다. 그리고, 적은 블록으로 분할 된 이미지는 블록 단위 컬러 히스토그램 교차로 인접 블록과의 유사도를 계산한다. 왜냐하면, 질감 및 대상 블록의 경계에 있어서, 추출 블록 경계를 제외한 나머지를 사용하기 때문이다. 게임 오브젝트는 이들 방법에 에 의해 블록 경계 영역을 설정하고 FPS 게임 플레이에 사용될 수 있다. 실험을 통해, 우리는 각각의 기능을 사용하여 분류 방법에 대해 80% 이상의 정확도를 얻을 수 있었다. 따라서, 이 특성을 이용하여 게임콘텐츠를 효율적으로 분류 할 수 있고, 이는 게임 속도와 전략적 행동에 보다 나은 결과를 초래할 것으로 예상한다.

딥러닝 기반 실내 디자인 인식 (Deep Learning-based Interior Design Recognition)

  • 이원규;박지훈;이종혁;정희철
    • 대한임베디드공학회논문지
    • /
    • 제19권1호
    • /
    • pp.47-55
    • /
    • 2024
  • We spend a lot of time in indoor space, and the space has a huge impact on our lives. Interior design plays a significant role to make an indoor space attractive and functional. However, it should consider a lot of complex elements such as color, pattern, and material etc. With the increasing demand for interior design, there is a growing need for technologies that analyze these design elements accurately and efficiently. To address this need, this study suggests a deep learning-based design analysis system. The proposed system consists of a semantic segmentation model that classifies spatial components and an image classification model that classifies attributes such as color, pattern, and material from the segmented components. Semantic segmentation model was trained using a dataset of 30000 personal indoor interior images collected for research, and during inference, the model separate the input image pixel into 34 categories. And experiments were conducted with various backbones in order to obtain the optimal performance of the deep learning model for the collected interior dataset. Finally, the model achieved good performance of 89.05% and 0.5768 in terms of accuracy and mean intersection over union (mIoU). In classification part convolutional neural network (CNN) model which has recorded high performance in other image recognition tasks was used. To improve the performance of the classification model we suggests an approach that how to handle data that has data imbalance and vulnerable to light intensity. Using our methods, we achieve satisfactory results in classifying interior design component attributes. In this paper, we propose indoor space design analysis system that automatically analyzes and classifies the attributes of indoor images using a deep learning-based model. This analysis system, used as a core module in the A.I interior recommendation service, can help users pursuing self-interior design to complete their designs more easily and efficiently.

도로 설계 지역 구분 (Area Identification for Road Design)

  • 김용석
    • 한국도로학회논문집
    • /
    • 제16권6호
    • /
    • pp.181-189
    • /
    • 2014
  • PURPOSES : Ambiguous decision on whether rural or urban area for road design can increase the construction cost and restrict the land use of surrounding area. However, administrative classification on rural and urban area is not directly related to road design because of this classification is not based on the engineering viewpoint, so method which can explain the road design context is required. METHODS : Method which enables to identify the area for road design is suggested based on the deceleration expected to be experienced by drivers who use the road section concerned. Deceleration rate corresponding to the area such as rural or urban suggested in Road Design Guideline is used as the criteria to identify the area by comparing this value with the estimated deceleration rate at the road section concerned. Speed profile method is utilized to derive the deceleration rate, and speed estimation way for reflecting both road geometry and intersection is suggested using stopping sight distance concept. RESULTS : The procedure of the method application is suggested, and the design example utilizing the method is provided. CONCLUSIONS : The method is expected to be used to identify the area for road design with engineering viewpoint, and design consistency among the roads with similar driving environment can be made.

Artificial intelligence in colonoscopy: from detection to diagnosis

  • Eun Sun Kim;Kwang-Sig Lee
    • The Korean journal of internal medicine
    • /
    • 제39권4호
    • /
    • pp.555-562
    • /
    • 2024
  • This study reviews the recent progress of artificial intelligence for colonoscopy from detection to diagnosis. The source of data was 27 original studies in PubMed. The search terms were "colonoscopy" (title) and "deep learning" (abstract). The eligibility criteria were: (1) the dependent variable of gastrointestinal disease; (2) the interventions of deep learning for classification, detection and/or segmentation for colonoscopy; (3) the outcomes of accuracy, sensitivity, specificity, area under the curve (AUC), precision, F1, intersection of union (IOU), Dice and/or inference frames per second (FPS); (3) the publication year of 2021 or later; (4) the publication language of English. Based on the results of this study, different deep learning methods would be appropriate for different tasks for colonoscopy, e.g., Efficientnet with neural architecture search (AUC 99.8%) in the case of classification, You Only Look Once with the instance tracking head (F1 96.3%) in the case of detection, and Unet with dense-dilation-residual blocks (Dice 97.3%) in the case of segmentation. Their performance measures reported varied within 74.0-95.0% for accuracy, 60.0-93.0% for sensitivity, 60.0-100.0% for specificity, 71.0-99.8% for the AUC, 70.1-93.3% for precision, 81.0-96.3% for F1, 57.2-89.5% for the IOU, 75.1-97.3% for Dice and 66-182 for FPS. In conclusion, artificial intelligence provides an effective, non-invasive decision support system for colonoscopy from detection to diagnosis.

Localization of ripe tomato bunch using deep neural networks and class activation mapping

  • Seung-Woo Kang;Soo-Hyun Cho;Dae-Hyun Lee;Kyung-Chul Kim
    • 농업과학연구
    • /
    • 제50권3호
    • /
    • pp.399-406
    • /
    • 2023
  • In this study, we propose a ripe tomato bunch localization method based on convolutional neural networks, to be applied in robotic harvesting systems. Tomato images were obtained from a smart greenhouse at the Rural Development Administration (RDA). The sample images for training were extracted based on tomato maturity and resized to 128 × 128 pixels for use in the classification model. The model was constructed based on four-layer convolutional neural networks, and the classes were determined based on stage of maturity, using a Softmax classifier. The localization of the ripe tomato bunch region was indicated on a class activation map. The class activation map could show the approximate location of the tomato bunch but tends to present a local part or a large part of the ripe tomato bunch region, which could lead to poor performance. Therefore, we suggest a recursive method to improve the performance of the model. The classification results indicated that the accuracy, precision, recall, and F1-score were 0.98, 0.87, 0.98, and 0.92, respectively. The localization performance was 0.52, estimated by the Intersection over Union (IoU), and through input recursion, the IoU was improved by 13%. Based on the results, the proposed localization of the ripe tomato bunch area can be incorporated in robotic harvesting systems to establish the optimal harvesting paths.

AUTOMATIC BUILDING EXTRACTION BASED ON MULTI-SOURCE DATA FUSION

  • Lu, Yi Hui;Trinder, John
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.248-250
    • /
    • 2003
  • An automatic approach and strategy for extracting building information from aerial images using combined image analysis and interpretation techniques is described in this paper. A dense DSM is obtained by stereo image matching. Multi-band classification, DSM, texture segmentation and Normalised Difference Vegetation Index (NDVI) are used to reveal building interest areas. Then, based on the derived approximate building areas, a shape modelling algorithm based on the level set formulation of curve and surface motion has been used to precisely delineate the building boundaries. Data fusion, based on the Dempster-Shafer technique, is used to interpret simultaneously knowledge from several data sources of the same region, to find the intersection of propositions on extracted information derived from several datasets, together with their associated probabilities. A number of test areas, which include buildings with different sizes, shape and roof colour have been investigated. The tests are encouraging and demonstrate that the system is effective for building extraction, and the determination of more accurate elevations of the terrain surface.

  • PDF

다중 경로 특징점 융합 기반의 의미론적 영상 분할 기법 (Multi-Path Feature Fusion Module for Semantic Segmentation)

  • 박상용;허용석
    • 한국멀티미디어학회논문지
    • /
    • 제24권1호
    • /
    • pp.1-12
    • /
    • 2021
  • In this paper, we present a new architecture for semantic segmentation. Semantic segmentation aims at a pixel-wise classification which is important to fully understand images. Previous semantic segmentation networks use features of multi-layers in the encoder to predict final results. However, they do not contain various receptive fields in the multi-layers features, which easily lead to inaccurate results for boundaries between different classes and small objects. To solve this problem, we propose a multi-path feature fusion module that allows for features of each layers to contain various receptive fields by use of a set of dilated convolutions with different dilatation rates. Various experiments demonstrate that our method outperforms previous methods in terms of mean intersection over unit (mIoU).