KSII Transactions on Internet and Information Systems (TIIS)
/
제16권9호
/
pp.2927-2941
/
2022
The primary task of machine fault diagnosis is to judge whether the current state is normal or damaged, so it is a typical binary classification problem with mutual exclusion. Mutually exclusive events and out-of-domain detection have one thing in common: there are two types of data and no intersection. We proposed a fusion model method to improve the accuracy of machine fault diagnosis, which is based on the mutual exclusivity of events and the commonality of out-of-distribution detection, and finally generalized to all binary classification problems. It is reported that the performance of a convolutional neural network (CNN) will decrease as the recognition type increases, so the variational auto-encoder (VAE) is used as the primary model. Two VAE models are used to train the machine's normal and fault sound data. Two reconstruction probabilities will be obtained during the test. The smaller value is transformed into a correction value of another value according to the mutually exclusive characteristics. Finally, the classification result is obtained according to the fusion algorithm. Filtering normal data features from fault data features is proposed, which shields the interference and makes the fault features more prominent. We confirm that good performance improvements have been achieved in the machine fault detection data set, and the results are better than most mainstream models.
최근 딥러닝의 발전으로 의미론적 분할을 통한 토지피복 분류 방법들이 제안되고 있다. 그러나 기존의 딥러닝 기반 모델들은 영상 정보만을 이용하기 때문에 시공간적 일관성을 담보할 수 없는 한계점이 있다. 이에 본 연구에서는 좌표 정보를 활용한 토지피복 분류 모델을 제안한다. 먼저 암시적 신경 표현 기법인 다중해상도 해시 인코더를 위경도 좌표계로 확장한 좌표 해시 인코더를 통해 좌표의 특징을 추출하였다. 다음으로 추출된 좌표 특징을 다양한 단계의 U-net 디코더와 결합하는 아키텍처를 제안하였다. 실험 결과, 제안 방법이 약 32% 향상된 분류 정확도를 보였고, 시공간적 일관성이 향상됨을 확인하였다.
날로 심각해져 가는 교통체증은 교통량에 비해 도로용량이 부족하여 나타나는 현상이나, 도로부족만이 교통체증의 주요 원인이라고 단정지을 수는 없다. 왜냐하면, 도시의 중추적 기능이 도심에 집중되어 있고 교통수요가 시간대별로 고르게 분포되어 있지 않기 때문이다. 이 연구는 개개의 운전자가 원하는 속도를 유지할 수 있는 통행의 질을 평가하는 주행계획에 있어서, 출발지로부터 목적지까지의 경로선택 시, 교통지체가 가장 적게 발생하는 선을 선택한다는 사실에 착안하여, 복잡한 가로망에 대하여 GIS기법을 이용한 경로를 교통량과 토로용량분석의 경로에 따라 가로별, 교차로별로 분석하여 기하급수적으로 증가하는 토로교통수요에 따라 시시각각 변모하는 토로, 교통, 운전자특성파악에 접근하고자 하며, 또한 가로별, 교차로별로 인접한 교통유발구역에 대한 분석과 같은 네트웍으로 시간당, 일주일의 하루 및 즉시 분류를 다양한 조건하에서 발생하는 교통지체경향에 대한 실제적 최적경로를 획득하고자 하며, 차후 최적경로 선택에 따른 교통의 원활한 배분을 통해 도로이용의 효율성 증대라는 결과를 기대하고, 따라서 교통량 대 도로용량과의 비에 따른 구간분석을 통하여 도로의 확장 및 확충의 적정시기를 결정하는데 있어서 과학적, 객관적이며 타당한 근거를 마련하고자 한다.
최근, 3D FPS 게임에서 캐릭터의 분류는 매우 중요한 문제로 떠오르고 있다. 본 연구에서는 간단한 조작으로 의미객체의 화상 영역 분할을 이용한 게임 콘텐츠 분류 방법을 제안한다. 이 방법에서는, 우선 비선형 RGB 컬러 모델과 컬러양자화 방식을 사용했다. 입력 화상은 20개 미만 양자화 된 색을 표현하고 의미 있는 적은 수의 컬러 히스토그램을 사용한다. 그리고, 적은 블록으로 분할 된 이미지는 블록 단위 컬러 히스토그램 교차로 인접 블록과의 유사도를 계산한다. 왜냐하면, 질감 및 대상 블록의 경계에 있어서, 추출 블록 경계를 제외한 나머지를 사용하기 때문이다. 게임 오브젝트는 이들 방법에 에 의해 블록 경계 영역을 설정하고 FPS 게임 플레이에 사용될 수 있다. 실험을 통해, 우리는 각각의 기능을 사용하여 분류 방법에 대해 80% 이상의 정확도를 얻을 수 있었다. 따라서, 이 특성을 이용하여 게임콘텐츠를 효율적으로 분류 할 수 있고, 이는 게임 속도와 전략적 행동에 보다 나은 결과를 초래할 것으로 예상한다.
We spend a lot of time in indoor space, and the space has a huge impact on our lives. Interior design plays a significant role to make an indoor space attractive and functional. However, it should consider a lot of complex elements such as color, pattern, and material etc. With the increasing demand for interior design, there is a growing need for technologies that analyze these design elements accurately and efficiently. To address this need, this study suggests a deep learning-based design analysis system. The proposed system consists of a semantic segmentation model that classifies spatial components and an image classification model that classifies attributes such as color, pattern, and material from the segmented components. Semantic segmentation model was trained using a dataset of 30000 personal indoor interior images collected for research, and during inference, the model separate the input image pixel into 34 categories. And experiments were conducted with various backbones in order to obtain the optimal performance of the deep learning model for the collected interior dataset. Finally, the model achieved good performance of 89.05% and 0.5768 in terms of accuracy and mean intersection over union (mIoU). In classification part convolutional neural network (CNN) model which has recorded high performance in other image recognition tasks was used. To improve the performance of the classification model we suggests an approach that how to handle data that has data imbalance and vulnerable to light intensity. Using our methods, we achieve satisfactory results in classifying interior design component attributes. In this paper, we propose indoor space design analysis system that automatically analyzes and classifies the attributes of indoor images using a deep learning-based model. This analysis system, used as a core module in the A.I interior recommendation service, can help users pursuing self-interior design to complete their designs more easily and efficiently.
PURPOSES : Ambiguous decision on whether rural or urban area for road design can increase the construction cost and restrict the land use of surrounding area. However, administrative classification on rural and urban area is not directly related to road design because of this classification is not based on the engineering viewpoint, so method which can explain the road design context is required. METHODS : Method which enables to identify the area for road design is suggested based on the deceleration expected to be experienced by drivers who use the road section concerned. Deceleration rate corresponding to the area such as rural or urban suggested in Road Design Guideline is used as the criteria to identify the area by comparing this value with the estimated deceleration rate at the road section concerned. Speed profile method is utilized to derive the deceleration rate, and speed estimation way for reflecting both road geometry and intersection is suggested using stopping sight distance concept. RESULTS : The procedure of the method application is suggested, and the design example utilizing the method is provided. CONCLUSIONS : The method is expected to be used to identify the area for road design with engineering viewpoint, and design consistency among the roads with similar driving environment can be made.
This study reviews the recent progress of artificial intelligence for colonoscopy from detection to diagnosis. The source of data was 27 original studies in PubMed. The search terms were "colonoscopy" (title) and "deep learning" (abstract). The eligibility criteria were: (1) the dependent variable of gastrointestinal disease; (2) the interventions of deep learning for classification, detection and/or segmentation for colonoscopy; (3) the outcomes of accuracy, sensitivity, specificity, area under the curve (AUC), precision, F1, intersection of union (IOU), Dice and/or inference frames per second (FPS); (3) the publication year of 2021 or later; (4) the publication language of English. Based on the results of this study, different deep learning methods would be appropriate for different tasks for colonoscopy, e.g., Efficientnet with neural architecture search (AUC 99.8%) in the case of classification, You Only Look Once with the instance tracking head (F1 96.3%) in the case of detection, and Unet with dense-dilation-residual blocks (Dice 97.3%) in the case of segmentation. Their performance measures reported varied within 74.0-95.0% for accuracy, 60.0-93.0% for sensitivity, 60.0-100.0% for specificity, 71.0-99.8% for the AUC, 70.1-93.3% for precision, 81.0-96.3% for F1, 57.2-89.5% for the IOU, 75.1-97.3% for Dice and 66-182 for FPS. In conclusion, artificial intelligence provides an effective, non-invasive decision support system for colonoscopy from detection to diagnosis.
Seung-Woo Kang;Soo-Hyun Cho;Dae-Hyun Lee;Kyung-Chul Kim
농업과학연구
/
제50권3호
/
pp.399-406
/
2023
In this study, we propose a ripe tomato bunch localization method based on convolutional neural networks, to be applied in robotic harvesting systems. Tomato images were obtained from a smart greenhouse at the Rural Development Administration (RDA). The sample images for training were extracted based on tomato maturity and resized to 128 × 128 pixels for use in the classification model. The model was constructed based on four-layer convolutional neural networks, and the classes were determined based on stage of maturity, using a Softmax classifier. The localization of the ripe tomato bunch region was indicated on a class activation map. The class activation map could show the approximate location of the tomato bunch but tends to present a local part or a large part of the ripe tomato bunch region, which could lead to poor performance. Therefore, we suggest a recursive method to improve the performance of the model. The classification results indicated that the accuracy, precision, recall, and F1-score were 0.98, 0.87, 0.98, and 0.92, respectively. The localization performance was 0.52, estimated by the Intersection over Union (IoU), and through input recursion, the IoU was improved by 13%. Based on the results, the proposed localization of the ripe tomato bunch area can be incorporated in robotic harvesting systems to establish the optimal harvesting paths.
An automatic approach and strategy for extracting building information from aerial images using combined image analysis and interpretation techniques is described in this paper. A dense DSM is obtained by stereo image matching. Multi-band classification, DSM, texture segmentation and Normalised Difference Vegetation Index (NDVI) are used to reveal building interest areas. Then, based on the derived approximate building areas, a shape modelling algorithm based on the level set formulation of curve and surface motion has been used to precisely delineate the building boundaries. Data fusion, based on the Dempster-Shafer technique, is used to interpret simultaneously knowledge from several data sources of the same region, to find the intersection of propositions on extracted information derived from several datasets, together with their associated probabilities. A number of test areas, which include buildings with different sizes, shape and roof colour have been investigated. The tests are encouraging and demonstrate that the system is effective for building extraction, and the determination of more accurate elevations of the terrain surface.
In this paper, we present a new architecture for semantic segmentation. Semantic segmentation aims at a pixel-wise classification which is important to fully understand images. Previous semantic segmentation networks use features of multi-layers in the encoder to predict final results. However, they do not contain various receptive fields in the multi-layers features, which easily lead to inaccurate results for boundaries between different classes and small objects. To solve this problem, we propose a multi-path feature fusion module that allows for features of each layers to contain various receptive fields by use of a set of dilated convolutions with different dilatation rates. Various experiments demonstrate that our method outperforms previous methods in terms of mean intersection over unit (mIoU).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.