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This study reviews the recent progress of artificial intelligence for colonoscopy from detection to diagnosis. The source of 
data was 27 original studies in PubMed. The search terms were “colonoscopy” (title) and “deep learning” (abstract). The 
eligibility criteria were: (1) the dependent variable of gastrointestinal disease; (2) the interventions of deep learning for classi-
fication, detection and/or segmentation for colonoscopy; (3) the outcomes of accuracy, sensitivity, specificity, area under the 
curve (AUC), precision, F1, intersection of union (IOU), Dice and/or inference frames per second (FPS); (3) the publication year 
of 2021 or later; (4) the publication language of English. Based on the results of this study, different deep learning methods 
would be appropriate for different tasks for colonoscopy, e.g., Efficientnet with neural architecture search (AUC 99.8%) in 
the case of classification, You Only Look Once with the instance tracking head (F1 96.3%) in the case of detection, and Unet 
with dense-dilation-residual blocks (Dice 97.3%) in the case of segmentation. Their performance measures reported varied 
within 74.0–95.0% for accuracy, 60.0–93.0% for sensitivity, 60.0–100.0% for specificity, 71.0–99.8% for the AUC, 70.1–
93.3% for precision, 81.0–96.3% for F1, 57.2–89.5% for the IOU, 75.1–97.3% for Dice and 66–182 for FPS. In conclusion, 
artificial intelligence provides an effective, non-invasive decision support system for colonoscopy from detection to diagnosis.
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INTRODUCTION

Gastrointestinal disease (GID) is a main contributor for dis-
ease burden in the world [1-6]. One popular definition of 
GID would be “the disease of the gastrointestinal tract in-
cluding the esophagus, liver, stomach, small and large in-
testines, gallbladder and pancreas” [1]. GID causes 8 mil-
lion deaths in the world in a year [2] and costs 120 billion 
dollars in the United States for 2018 [3]. GID comes from 
various factors including bad health behavior, unhealthy 
bowel habits, excessive anti-diarrheal/antacid medication 
and pregnancy [6]. Colonoscopy is usually considered to be 
the most effective approach for the diagnosis of GID [7-12]. 
Based on micro-simulation, the incremental cost effective-
ness ratio of computed tomography colonoscopy for those 
aged 50–75 years every 5 years was minimal ($1,092) with 
respect to fecal immunochemical test every year [7]. Accord-
ing to cohort simulation, likewise, the incremental cost ef-

fectiveness ratio of organized colonoscopy for those aged 
55–64 years once in their lifetime was $6,500 (below the 
accepted willingness to pay threshold) with respect to no 
screening [8]. Moreover, artificial intelligence is expected 
to aid in colonoscopy effectively [12]. The performance of 
colonoscopy varies depending on tumor sizes and screening 
conditions such as screen shaking and fluid injection. Artifi-
cial intelligence would be an invaluable decision supporting 
system to solve this problem [12]. 

Based on the Merriam-Webster dictionary, artificial intel-
ligence can be defined as “the capability of a machine to 
imitate intelligent human behavior”. An artificial neural net-
work, a popular artificial intelligence approach, consists of 
information units (so called “neurons”) that are networked 
with weights. It usually includes one input layer, one, two, 
or three intermediate layers, and one output layer. An arti-
ficial neural network with many intermediate layers is called 
a deep neural network or deep learning [13-15]. Various 
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deep learning models have been developed for various 
data forms. For example, the convolutional neural network 
is designed for extracting the global information of image 
data. A kernel operates across input data, calculating the 
maximum/average of its corresponding input data elements 
(“max/average pooling”) or the dot product of its own el-
ements and their input data counterparts (“convolution”). 
These operations classify certain features of the input data, 
e.g., the form of a tumor vs. that of a normal cell [16]. On 
the other hand, the recurrent neural network is designed 
for extracting the local information of sequence data. The 
current output information comes in a repetitive (or “recur-
rent”) pattern from the current input information and the 
previous hidden state (the memory of the network on what 
happened in all previous periods) [17]. 

Unet is a common convolutional neural network for colo-
noscopy now. Its “U-shaped” encoder-decoder structure is 
designed to combine the strengths of the contracting path 
for down-sampling on input image tiles (i.e., extracting 
global information) and the expanding path for up-sam-
pling on output segmentation maps (i.e., extracting local in-
formation). Its contracting path for down-sampling consists 
of the repeated application of two 3 × 3 convolutional layers 
(each layer followed by a rectified-linear-unit and a 2 × 2 
max-pooling layer). Here, 3 × 3 (or 2 × 2) denotes the size 
of the convolutional (or max pooling) kernel. Its expanding 
path for up-sampling consists of (1) up-sampling/de-convo-
lution by a 2 × 2 convolutional layer, (2) the concatenation 
(copy-crop) of feature maps from the contracting path and 
(3) the repeated application of two 3 × 3 convolutional 
layers (each layer followed by a rectified-linear-unit layer). 
Its overlap tile minimizes overlap and maximizes efficiency 
as well [18]. Efficientnet is another popular convolutional 
neural network for colonoscopy at this point, finding the 
optimal balance of network depth, width and resolution 
with neural architecture search [19,20]. There has been a 
rapid expansion of literature on the application of artificial 
intelligence for colonoscopy and this study reviews the re-
cent progress of artificial intelligence for colonoscopy from 
detection to diagnosis.

METHODS 

Figure 1 shows the flow diagram of this study. The source of 
data was 27 original studies in PubMed [21-47]. The search 

terms were “colonoscopy” (title) and “deep learning” (ab-
stract). The eligibility criteria were: (1) the dependent vari-
able of GID; (2) the interventions of deep learning for classi-
fication, detection and/or segmentation for colonoscopy; (3) 
the outcomes of accuracy, sensitivity, specificity, area under 
the curve (AUC), precision, F1, intersection of union (IOU), 
Dice and/or inference frames per second (FPS); (3) the pub-
lication year of 2021 or later; (4) the publication language 
of English. 

RESULTS 

Review summary
The summary of review is shown in Tables 1–3 for classifi-
cation, detection and segmentation. The tables have four 
summary measures, i.e., sample size, deep learning meth-
ods, performance measures compared to baseline models 
and tasks for colonoscopy. Based on the results of this re-
view, different deep learning methods would be appropri-
ate for different tasks for colonoscopy, e.g., Efficientnet 
(AUC 99.8%) in the case of classification, You Only Look 
Once with the instance tracking head (ITH; F1 96.3%) in 
the case of detection, and Unet with dense-dilation-resid-
ual blocks (Dice 97.3%) in the case of segmentation. Their 
performance measures reported varied within 74.0–95.0% 

Figure 1. Flow diagram.
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for accuracy, 60.0–93.0% for sensitivity, 60.0–100.0% for 
specificity, 71.0–99.8% for the AUC, 70.1–93.3% for pre-
cision, 81.0–96.3% for F1, 57.2–89.5% for the IOU, 75.1–
97.3% for Dice and 66–182 for FPS. However, artificial in-
telligence is a data-driven method and more study is to be 
done with more external data for greater external validity. 

Classification 
The review of major studies regarding deep learning classi-

fication for colonoscopy is given in this section. The task of 
deep learning classification for colonoscopy centered on the 
states of the polyp, the colon and Crohn’s disease. Here, 
the sample size varied from 99 to 56,872, while Bidirection-
al Encoder Representations from Transformers (BERT), Effi-
cientnet, fuzzy inference, region-convolutional neural net-
work (R-CNN), Resnet and its Inception/Xception ensemble 
were common approaches. The range of their performance 
indicators were 74.0–95.0% for accuracy, 60.0–93.0% for 

Table 1. Review summary: classification

Study Sample Size Methods Performance vs. Baseline Dependent variable

[21] 112 Mask RCNN NBI Accuracy 95.0%, Sensitivity 93.0%, Specificity 100.0% Polyp 

[21] 150 Mask RCNN WLI Accuracy 74.0%, Sensitivity 60.0%, Specificity 100.0% Polyp 

[22] 6,649 Resnet Jigsaw Learning for 
2,554 Unlabeled Images 

AUC 71% vs. 53% (Resnet) Lesion 

[25] 2,150 Resnet Transfer Learning Accuracy 86.4% vs. 79.8% (Resnet) 4 Colon States 

[27] 99 Fuzzy Inference Sensitivity 65.0% Specificity 60.0% Polyp 

[31] 17,879 BERT-FLAIR F1 91.8%/92.3%/88.6% vs. 90.0%/90.0%/83.4% for 
Colonoscopy/Pathology/Radiology (BERT) 

Polyp Text 

[34] 15,330 Resnet Accuracy 92.0% vs. 90.7% (Best Clinician) Crohn vs. UC vs. Normal

[36] 1,897 Resnet-Xception Ensemble AUC 97.7% vs. 83.0% (Inception) Polyp 

[37] 1,865 Efficientnet AUC 99.8% vs. 99.5% (Densenet) 6 Colon States 

[43] 56,872 Resnet-Inception Ensemble Sensitivity 90.1% vs. 89.6% Specificity 72.3% vs.  
67.1% SPI 0.01 vs. 1.72 (Resnet) 

4 Colon States 

AUC, area under the curve; BERT, Bidirectional Encoder Representations from Transformers; FLAIR, natural language processing 
package; NBI, narrow-band imaging; RCNN, region-convolutional neural network; SPI, inference seconds per image; UC, ulcerative 
colitis.

Table 2. Review summary: detection

Study Sample size Methods Performance vs. Baseline Dependent variable

[24] 1,000 ColonSegNet: Unet Residual 
Blocks 

Precision 80.0% vs. 85.1%, IOU 81.0% vs. 80.3%,  
FPS 180 vs. 48 (YOLOv4) 

Polyp 

[26] 1,450 MBFFNet: Unet Multi-Branch 
Feature Fusion 

F1 94.5% vs. 93.5%, IOU 89.5% vs. 88.8%,  
FPS 112 vs. 90 (Unet) 

Polyp 

[29] 37,899 RefineDet: SSD Two Stages F1 92.7%/82.2% vs. 91.7%/77.9% for Adenomatous/
Hyperplastic (SSD) 

Polyp 

[33] 49,136 YOLO F1 81.0% Polyp 

[38] 3,726 Inception-Based SSD Precision 93.3% vs. 90.0% (VGG-Based) Polyp WCE 

[39] 14,203 YOLO Instance Tracking Head F1 96.3% vs. 93.8%, FPS 66 vs. 43 (SSD Instance Tracking 
Head) 

Polyp 

[46] 700 YOLO GAN Data Augmentation Precision 70.1% vs. 66.7%, IOU 57.2% vs. 54.8% (YOLO) Polyp 

[47] 1,450 PSnet: Unet Dual Encoder & 
Dual Decoder 

IOU 79.7% vs. 58.1% (Unet) Polyp 

FPS, inference frames per second; GAN, generative adversarial network; IOU, intersection of union; SSD, single shot detector; VGG, 
visual geometry group; WCE, wireless capsule endocopy; YOLO, You Only Look Once.
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sensitivity, 60.0–100.0% for specificity and 71.0–99.8% for 
the AUC. Among these approaches, Efficientnet registered 
the best performance with the AUC of 99.8% [37]. The aim 
of this study was to develop and validate deep learning clas-
sification models for colonoscopy on six states of the colon, 
i.e., advanced tubular adenocarcinoma, tubular adenoma, 
traditional serrated adenoma, sessile serrated adenoma, hy-
perplastic polyp and non-specific change. Data came from 
1,865 images from 703 patients who had colonoscopy at a 
general hospital in a metropolitan area around Seoul during 
2017–2019. The 1,865 images were split into training, vali-
dation and test sets with an 80:10:10 ratio (1,484:173:208 
images). A major criterion for the test of the trained and 
validated models was the AUC. Efficientnet-B7 and Densen-
et-161 (baseline) were trained, validated, tested and com-
pared. Based on the results of this study, the AUCs of Ef-
ficientnet were higher than those of Densenet in general: 
99.7% vs. 100.0% for advanced tubular adenocarcinoma, 
99.7% vs. 99.5% for tubular adenoma, 100.0% vs. 99.9% 
for traditional serrated adenoma, 99.5% vs. 99.3% for 
sessile serrated adenoma, 99.5% vs. 99.1% for hyperplas-
tic polyp, 99.7% vs. 99.5% for non-specific change, and 
99.8% vs. 99.5% on average. The sensitivity of Efficientnet 
was superior to that of Densenet as well, i.e., 98.5% vs. 

97.1%. According to the findings of Gradient-Weighted 
Class Activation Mapping, both CNNs did put more focus 
on epithelial lesions than their stroma counterparts. 

Detection 
The review of major studies regarding detection for colo-
noscopy is presented in this section. The emphasis of deep 
learning detection for colonoscopy was on the object of 
the polyp. In this task, the sample size showed a variation 
from 700 to 37,899, whereas Single Shot Detector, Unet, 
You Only Look Once, and their variations such as Gener-
ative Adversarial Network data augmentation were popu-
lar choices. The scope of their performance measures were 
70.1–93.3% for precision, 81.0–96.3% for F1, 57.2–89.5% 
for the Intersection over the Union, and 66–180 for FPS. 
Among these choices, You Only Look Once with the ITH 
gave the best performance with the F1 of 96.3% [39]. The 
purpose of this study was to develop and validate deep 
learning detection models for colonoscopy on the object of 
the polyp. The data source was 14,202 images from one 
private and three public sources including CVC-ClincDB, 
CVC-VideoClinicDB and ETIS-LARIB. A major criteria for the 
test of the trained and validated models were F1 and FPS. 
You Only Look Once with the ITH and its Single Shot De-

Table 3. Review summary: segmentation

Study Sample size Methods Performance vs. Baseline Dependent variable

[23] 1,612 DenseUnet: Unet DADR Blocks Dice 90.9% vs. 70.6% (Unet) Polyp 

[24] 1,000 ColonSegNet: Unet Residual Blocks Dice 82.1% vs. 87.6%, FPS 182 vs. 35 (Unet) Polyp 

[26] 1,450 MBFFNet: Unet Multi-Branch Feature Fusion Dice 84.0% vs. 83.8%, FPS 112 vs. 90 (Unet) Polyp 

[28] 12,000 RNNSLAM: RNN Simultaneous Localization 
& Mapping 

Depth RMSE 0.335 vs. 0.544 (RNN Depth & 
Pose Estimation) 

Polyp 3D 

[30] 2,394 FocusUnet: Unet Spatial & Channel-Based 
Attention 

Dice 87.8% vs. 56.1% (Unet) Polyp 

[32] 10,118 Unet Dice 94.7% Fecal Material 

[35] 4,070 Unet Bounding Boxes Dice 85.5% vs. 81.5% (Unet) Polyp 

[40] 3,000 PRAnet GAN-CLTS Dice 89.3% vs. 87.1% (PRAnet) Polyp 

[41] 1,612 Unet Graft (Proprocessing Role Added) Dice 96.6% vs. 71.5% (Unet) Polyp 

[42] 1,612 Nnet: Unet Dense-Dilation-Residual Blocks Dice 97.3% vs. 91.6% (Unet) Polyp 

[44] 777,627 Unet 2D Encoder & 3D Decoder Dice 75.1% vs. 72.2% (Unet) Polyp 

[45] 1,612 Unet Guided Attention Resnet Dice 91.0% vs. 88.0% (Unet) Polyp 

[47] 1,450 PSnet: Unet Dual Encoder & Dual Decoder Dice 86.3% vs. 65.2% (Unet) Polyp 

CLTS, color-lighting-texture-specular reflection augmentation; DADR, dense-attention-dilation-residual; GAN, generative adversari-
al network; PRAnet, parallel reverse attention network; RMSE, root mean squared error; RNN, recurrent neural network.
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tector counterpart (baseline) were trained, validated, tested 
and compared. Here, the ITH was introduced to improve the 
performance by tracking the embedding extractions for the 
regions of interests from three consecutive images togeth-
er with conducting detection tasks. Based on the findings 
of this study, the former model outperformed its baseline 
counterpart in terms of accuracy and speed at the same 
time, i.e., F1 96.3% vs. 93.8%, FPS 66 vs. 43. 

Segmentation 
The review of important studies regarding segmentation for 
colonoscopy is reported in this section. The focus of deep 
learning segmentation for colonoscopy was on the lesion of 
the polyp as well. In this area, the smallest (or biggest) sam-
ple size was 1,000 (or 777,627), and Unet and its extensions 
including dense-dilation-residual blocks were usual models. 
The lower and upper bounds of their performance scores 
were 75.1–97.3% for Dice and 112–182 for FPS. Among 
these models, Unet with dense-dilation-residual blocks pre-
sented the best performance with the Dice of 97.3% [42]. 
This study strived to develop and validate deep learning seg-
mentation models for colonoscopy on the lesion of the pol-
yp. The data origin was 1,612 images from two public sourc-
es, Kvasir-SEG and CVC-ClinicDB. The 1,612 images were 
split into training, validation and test sets with a 70:10:20 
ratio (1,144:164:312 images). A major criteria for the test of 
the trained and validated models were Dice and FPS. Unet 
(baseline) and its various extensions (e.g., dense-dilation-re-
sidual blocks in this study) were trained, validated, tested 
and compared. This study made a unique contribution, giv-
en that previous studies employed only one or two of dense, 
dilation and residual blocks. Unet with dense-dilation-resid-
ual blocks (so called Nnet) surpassed Unet (baseline) and its 
previous extensions, e.g., Dice 97.3% vs. 91.6% (Unet). 

DISCUSSION

This study reviewed the recent progress of artificial intelli-
gence for colonoscopy from detection to diagnosis. Differ-
ent deep learning methods were found to be appropriate 
for different tasks for colonoscopy, e.g., Efficientnet with 
neural architecture search (AUC 99.8%) in the case of clas-
sification, You Only Look Once with the ITH (F1 96.3%) in 
the case of detection, and Unet with dense-dilation-resid-
ual blocks (Dice 97.3%) in the case of segmentation. Their 

performance measures reported varied within 74.0–95.0% 
for accuracy, 60.0–93.0% for sensitivity, 60.0–100.0% 
for specificity, 97.7–99.8% for the AUC, 70.1–93.3% for 
precision, 81.0–96.3% for F1, 57.2–89.5% for the IOU, 
75.1–97.3% for Dice and 66–180 for FPS. However, it can 
be noted that this study focused on performance outcomes 
and ignored data characteristics including the categories 
and the structures. The selection of major studies based on 
performance results can be biased for this reason. It will be 
important for future research to give a full consideration re-
garding this important issue. 

Indeed, little examination has been done and more in-
vestigation is needed on reinforcement learning for colo-
noscopy. Reinforcement learning is an artificial intelligence 
approach with the following components: the environment 
presents a series of rewards; an agent takes a series of ac-
tions to maximize the cumulative reward in response; and 
the environment moves to the next period with given tran-
sition probabilities [48]. Reinforcement learning has been 
known for its revolutionary idea of temporal difference 
learning: artificial intelligence (e.g., Alpha-Go) began as if 
a human player takes a series of actions and maximizes the 
cumulative reward (e.g., the chance of victory) from the 
limited information available in limited periods only; then 
it goes very far beyond the best human player ever with 
the absolute power of big data absorbing all human players 
up to now [49]. It is reinforcement learning (or temporal 
difference learning) that encapsulates the crucial qualities 
of artificial intelligence as “being similar with but superior 
to human intelligence” [49]. However, little literature has 
been available and more research is to be done on rein-
forcement learning for colonoscopy. Especially, it can be 
pointed out that more effort is essential for data collection 
and standardization in this direction. Reinforcement learn-
ing requires the collection and standardization of massive 
high-quality data with respect to its major components, i.e., 
rewards, actions, transition probabilities. But such endeav-
or has been very limited for colonoscopy because of ethical 
concerns and little interest on this issue. Overcoming this 
challenge is expected to be a major breakthrough for the 
application of artificial intelligence for colonoscopy. 

In spite of this limitation, however, this study demon-
strates that artificial intelligence provides an effective, 
non-invasive decision support system for colonoscopy from 
detection to diagnosis. 
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