• Title/Summary/Keyword: interpolation of coefficients

Search Result 126, Processing Time 0.027 seconds

Directional Block Loss Recovery sing Hypothesis Testing Problem (가설 검증 기법을 이용한 방향성을 가지는 손실 블록의 복구)

  • Hyun, Seung-Hwa;Kim, Yoo-Shin;Eom, Il-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.87-94
    • /
    • 2008
  • In this paper, we present a directional error concealment technique to compensate a lost block. Generally, the strong edge of an image has the large amounts of the variance because of its large coefficients in the wavelet domain. For estimating edge direction of a lost block, a $X^2$ hypothesis-testing problem is applied using the variance of wavelet coefficients. The lost block is interpolated according to the estimated edge direction. The pixels for interpolation is obtained from the edge direction. The proposed method outperforms the previous methods in objective and subjective qualities.

Comparison between wind load by wind tunnel test and in-site measurement of long-span spatial structure

  • Liu, Hui;Qu, Wei-Lian;Li, Qiu-Sheng
    • Wind and Structures
    • /
    • v.14 no.4
    • /
    • pp.301-319
    • /
    • 2011
  • The full-scale measurements are compared with the wind tunnel test results for the long-span roof latticed spatial structure of Shenzhen Citizen Center. A direct comparison of model testing results to full-scale measurements is always desirable, not only in validating the experimental data and methods but also in providing better understanding of the physics such as Reynolds numbers and scale effects. Since the quantity and location of full-scale measurements points are different from those of the wind tunnel tests taps, the weighted proper orthogonal decomposition technique is applied to the wind pressure data obtained from the wind tunnel tests to generate a time history of wind load vector, then loads acted on all the internal nodes are obtained by interpolation technique. The nodal mean wind pressure coefficients, root-mean-square of wind pressure coefficients and wind pressure power spectrum are also calculated. The time and frequency domain characteristics of full-scale measurements wind load are analyzed based on filtered data-acquisitions. In the analysis, special attention is paid to the distributions of the mean wind pressure coefficients of center part of Shenzhen Citizen Center long-span roof spatial latticed structure. Furthermore, a brief discussion about difference between the wind pressure power spectrum from the wind tunnel experiments and that from the full-scale in-site measurements is compared. The result is important fundament of wind-induced dynamic response of long-span spatial latticed structures.

Variation of time-dependent convection beat transfer coefficients in beat transfer analysis at various initial beating rates of tunnel fire scenarios (요소제거모델을 활용한 열전달해석에서 터널 화재이력곡선의 초기가열구배에 따른 대류열전달계수의 변화)

  • Choi, Soon-Wook;Chang, Soo-Ho;Lee, Jun-Hwan;Ahn, Sung-Yol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.3
    • /
    • pp.223-237
    • /
    • 2010
  • The initial heating rate is well known as one of the most influencing factors on the occurrence of spalling and the loss of strength in concrete after fire initiation. In this study, a series of fire tests were carried out at different initial heating rates to find out its effects on the deterioration of tunnel structural members. Heat transfer analyses combined with an element elimination model were also carried out to verify its applicability in the same conditions as the fire tests. Moreover, the convection heat transfer coefficients compatible with fire test results were derived from parametric studies. In this course, their time-dependent variations were also analyzed at different initial heating rates. Finally, a numerical formula to estimate the heat transfer coefficients at the various initial heating rates was proposed by the interpolation of the results of numerical analyses.

Quantization of LPC Coefficients Using a Multi-frame AR-model (Multi-frame AR model을 이용한 LPC 계수 양자화)

  • Jung, Won-Jin;Kim, Moo-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.93-99
    • /
    • 2012
  • For speech coding, a vocal tract is modeled using Linear Predictive Coding (LPC) coefficients. The LPC coefficients are typically transformed to Line Spectral Frequency (LSF) parameters which are advantageous for linear interpolation and quantization. If multidimensional LSF data are quantized directly using Vector-Quantization (VQ), high rate-distortion performance can be obtained by fully utilizing intra-frame correlation. In practice, since this direct VQ system cannot be used due to high computational complexity and memory requirement, Split VQ (SVQ) is used where a multidimensional vector is split into multilple sub-vectors for quantization. The LSF parameters also have high inter-frame correlation, and thus Predictive SVQ (PSVQ) is utilized. PSVQ provides better rate-distortion performance than SVQ. In this paper, to implement the optimal predictors in PSVQ for voice storage devices, we propose Multi-Frame AR-model based SVQ (MF-AR-SVQ) that considers the inter-frame correlations with multiple previous frames. Compared with conventional PSVQ, the proposed MF-AR-SVQ provides 1 bit gain in terms of spectral distortion without significant increase in complexity and memory requirement.

Study on Extraction of the Center Point of Steam Generator Tubes (증기발생기 세관의 중심좌표추출에 대한 연구)

  • 조재완;김창회;서용칠;최영수;김승호
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.263-266
    • /
    • 2002
  • This paper describes extraction procedure for the center coordinates of steam generator tubes of Youngkwang NPP #6, which are arrayed in triangular patterns. Steam generator tube images taken with wide field-of-view lens and low-light lamp mounted on a ccd camera tend to have low contrast, because steam generator is sealed and poorly illuminated. The extraction procedures consists of two steps. The first step is to process the region with superior contrast in entire image of steam generator tubes and to extract the center points. Using the extracted coordinates in the first step and the geometrical array characteristics of tubes lined up in regular triangle forms, the central points of the rest region with low contrast are estimated. The straight lines from center point of a tube to neighbour points in horizontal and 60, 120$^{\circ}$ degree directions are derived. The intersections of straight line In horizontal direction and slant line in regular triangle direction are selected as the center coordinates of steam generator tubes. The Chi-square interpolation method is used to determine the line's coefficients in horizontal and regular triangle direction.

  • PDF

Front Points Tracking in the Region of Interest with Neural Network in Electrical Impedance Tomography

  • Seo, K.H.;Jeon, H.J.;Kim, J.H.;Choi, B.Y.;Kim, M.C.;Kim, S.;Kim, K.Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.118-121
    • /
    • 2003
  • In the conventional boundary estimation in EIT (Electrical Impedance Tomography), the interface between anomalies and background is expressed in usual as Fourier series and the boundary is reconstructed by obtaining the Fourier coefficients. This paper proposes a method for the boundary estimation, where the boundary of anomaly is approximated as the interpolation of front points located discretely along the boundary and is imaged by tracking the points in the region of interest. In the solution to the inverse problem to estimate the front points, the multi-layer neural network is introduced. For the verification of the proposed method, numerical experiments are conducted and the results indicate a good performance.

  • PDF

IMPROVEMENT OF FLOW SIMULATIONS METHOD WITH MULTI-RESOLUTION ANALYSIS BY BOUNDARY TREATMENT (경계면 처리 개선을 통한 다중해상도 유동해석 기법 개선 연구)

  • Kang, H.M.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.44-50
    • /
    • 2015
  • The computational efficiency of flow simulations with Multi-resolution analysis (MRA) was enhanced via the boundary treatment of the computational domain. In MRA, an adaptive dataset to a solution is constructed through data decomposition with interpolating polynomial and thresholding. During the decomposition process, the basis points of interpolation should exceed the boundary of the computational domain. In order to resolve this problem, the weight coefficients of interpolating polynomial were adjusted near the boundaries. By this boundary treatment, the computational efficiency of MRA was enhanced while the numerical accuracy of a solution was unchanged. This modified MRA was applied to two-dimensional steady Euler equations and the enhancement of computational efficiency and the maintenance of numerical accuracy were assessed.

Evaluation of T-stress for cracks in elastic sheets

  • Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.3
    • /
    • pp.335-346
    • /
    • 2005
  • The T-stress of cracks in elastic sheets is solved by using the fractal finite element method (FFEM). The FFEM, which had been developed to determine the stress intensity factors of cracks, is re-applied to evaluate the T-stress which is one of the important fracture parameters. The FFEM combines an exterior finite element model with a localized inner model near the crack tip. The mesh geometry of the latter is self-similar in radial layers around the tip. The higher order Williams series is used to condense the large numbers of nodal displacements at the inner model near the crack tip to a small set of unknown coefficients. Numerical examples revealed that the present approach is simple and accurate for calculating the T-stresses and the stress intensity factors. Some errors of the T-stress solutions shown in the previous literature are identified and the new solutions for the T-stress calculations are presented.

Construction of Yield Criterion for AZ31 Sheet Alloy by Considering Tension-Compression Asymmetry (인장-압축 비대칭성을 고려한 AZ31 판재의 항복함수 구성)

  • Yoon, J.H.;Cazacu, Oana;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.527-533
    • /
    • 2011
  • In order to take into account the strong anisotropy and the tension-compression asymmetry of AZ31 sheet alloy, the Cazacu-Plunkett-Barlat yield criterion(Cazacu, 2006), CPB06, was adopted in the present material modeling. The variation of anisotropic coefficients which describe the yield surface evolution of AZ31 is optimized using an interpolation function based on specific calibration results. It generates continuous yield surfaces, which makes it possible to describe the different hardening rates in tension and compression as well as tension-compression asymmetry of magnesium alloys. The ability of the CPB06 yield criterion to predict experimental results was demonstrated and compared with that of the Hill(1948) yield criterion.

3-D Positioning and DEM Generation from the IKONOS Stereo Images (IKONOS 입체영상을 이용한 3차원 위치 결정과 DEM 생성)

  • 지학송;안기원;박병욱;이건기;서두천
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.423-431
    • /
    • 2003
  • This study presents on generation coefficients of the RFM using GEO-level stereo images of the IKONOS satellite. 3-D positioning and DEM generation of this model on the test field. In result, the maximum error of image coordinates acquired by the upward transform of the RFM did nat exceed 8 pixels. DEM was generated with kriging interpolation extracted three dimensional ground coordinate to rational quadratic function form, me compared it to reference digital elevation model made from 1:5,000 digital map and 1:1,000 digital map, and so, could generate digital elevation model in the accuracy as average RMSE of elevation was ${\pm}$ 3∼5 m in RFM.

  • PDF