• Title/Summary/Keyword: internet of Things

Search Result 2,832, Processing Time 0.031 seconds

The Arduino based Window farm Monitoring System (아두이노를 활용한 창문형 수경재배 모니터링 시스템)

  • Park, Young-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.563-569
    • /
    • 2018
  • This paper is on the implementation of a system for automatically monitoring window farm hydroponics based on Arduino (utilizing Arduino's open source code) emerging as the icon of the Fourth Industrial Revolution. A window farm, which means window-type hydroponics, is offered as an alternative to fulfill the desires of people who want to grow plants aside from the busy daily life in the city. The system proposed in this paper was developed to automatically monitor a window farm hydroponics cultivation environment using the Arduino UNO board, a four-charmel motor shield, temperature and humidity sensors, illumination sensors, and a real-time clock module. Modules for hydroponics have been developed in various forms, but power consumption is high because most of them use general power and motors. Since it is not a system that is monitored automatically, there is a disadvantage in that an administrator always has to manage its operational state. The system is equipped with a water supply that is most suitable for a plant growth environment by utilizing temperature, humidity, and light sensors, which function as Internet of Things sensors. In addition, the real-time clock module can be used to provide a more appropriate water supply. The system was implemented with sketch code in a Linux environment using Raspberry Pi 3 and Arduino UNO.

Development of a Mountainous Area Monitoring System based on IoT Technology (IoT 기술 기반의 산악지 모니터링 시스템 개발)

  • Kim, Kyoon-Tai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.437-446
    • /
    • 2017
  • 70 percent of Korea's territory is covered with mountains, whose difficult conditions can cause damage to facilities. Recently, the demand for facilities related to outdoor activities including monorails has been on the rise, and such facilities are much more likely to become damaged. For this reason, a monitoring system applying IoT to mountainous areas was developed and its applicability is evaluated in this study. The current status of the existing mountainous facilities and monitoring systems were reviewed, and the current wired monitoring technology was analyzed. A scenario for IoT-based monitoring was developed, and then sensor nodes were developed, which include an RF-communication module and interface, power-supply and solar-cell. A testbed was set up at K University. The same data was collected by the wireless system as had been collected by the wired one. The study findings are as follows. Firstly, by using the wireless system, it is estimated that the construction duration can be reduced by about 25 percent, while the construction costs can be reduced by about 3~52 percent. Secondly, the safety of the construction workers can be improved by making the working conditions less dangerous, such as by eliminating the need to transport cables.

A Study on the Technology Development of User-based Home Automation Service (사용자 위치기반 홈오토메이션 서비스 기술 개발에 관한 연구)

  • Lee, Jung-Gi;Lee, Yeong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.327-332
    • /
    • 2017
  • As Internet of Things (IoT) technology advances, there is a growing demand for location-based services (LBSs) to identify users' mobility and identity. The initial LBS system was mainly used to measure position information by measuring the phase of a signal transmitted from a global positioning system (GPS) satellite or by measuring distance to a satellite by tracking the code of a carrier signal. However, the use of GPS satellites is ineffective, because it is difficult to receive satellite signals indoors. Therefore, research on wireless communications systems like ultra-wide band (UWB), radio frequency identification (RFID), and ZigBee are being actively pursued for location recognition technology that can be utilized in an indoor environment. In this paper, we propose an LBS system that includes the 2.45GHz band for chirp spread spectrum (CSS), and the 3.1-10.6GHz band and the 250-750MHz bands for UWB using the IEEE 802.15.4a standard for low power-based location recognition. As a result, we confirmed that the 2.45GHz Industrial, Scientific and Medical (ISM) band RF transceiver and the ranging function can be realized in the hardware and has 0dBm output power.

Framing Effect of Energy Consumption Information on Consumers' Attitude (에너지 소비정보의 프레이밍이 소비자 태도에 미치는 효과)

  • Kim, Bora
    • Journal of Digital Convergence
    • /
    • v.15 no.5
    • /
    • pp.129-138
    • /
    • 2017
  • Faced with the era of the IoT (Internet of Things) and smart homes, this study aims to explore the type of information loaded on smart devices that can lead to consumer's efficient energy use. 105 Americans participated in the survey with eight different versions according to two energy consumption levels (Above or Below condition) by four information frames (Finance, security, environment, or health). It was found that frames can make significant differences in consumers' attitudes; (1) Those in the Below condition worried about environments more than those in the Above condition; (2) Finance-framed information in the Above condition was the least effective to increase consumers' energy saving motivation; (3) In the Below condition, those receiving finance and security framed information revealed more environmental concerns than those receiving other types of informations. This study can contribute to the field by providing with basic research findings that smart device developers can refer to in the future. Also, follow-up studies need to be conducted to examine effective messages for Korean energy consumers.

Effect of Psychological Variables on Decision-making Time in the Online Centipede Game (온라인 지네 게임으로 알아본 심리적 변인이 의사결정 시간에 미치는 영향)

  • Kim, Bora;Kwon, Young-Mi
    • Journal of Digital Convergence
    • /
    • v.15 no.12
    • /
    • pp.169-185
    • /
    • 2017
  • Given that nowadays things get very fast due to the pervasive use of the Internet and mobile devices, decision-making time can be an important variable in the online economic decisions. Although in experimental and behavioral economics, measures like scores or earnings are usually preferred, this study argues that the time variable can be dealt with as a new decision outcome. Thus, by selecting some psychological factors presumably impactful in the online context (i.e., incidental emotions, psychological distances, and individual's impulsivity), this study tested their effect on decision time in the online centipede game. As a result, the mean decision time in the game was longer (1) in the happiness condition than in the anger condition and (2) in the friend condition than in the stranger condition. The people with attention difficulties spent a short time in the decision and the people who dislike complex problems spent a short time in explaining their decision. This study can contribute to the field as it used the decision time as the dependent variable and it tested the effect of psychological factors in the context of online decision-making. Future studies can be conducted in other online decision situations or by considering other psychological variables.

Real-Time Management System of Reefer Container based on IoT (IoT 기반 냉동컨테이너 실시간 관리 시스템)

  • Moon, Young-Sik;Jung, Jun-Woo;Choi, Sung-Pill;Kim, Tae-Hoon;Lee, Byung-Ha;Kim, Jae-Joong;Choi, Hyung-Lim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2093-2099
    • /
    • 2015
  • To prevent damage to the cargo, monitoring and remote management for reefer containers is necessary. The currently used remote monitoring service is the Power Cable Transmission(PCT) system, which is recommended by the International Maritime Organization(IMO). However, this system is not widely used because it requires a separate PCT infrastructure and is susceptible to data loss problems. To solve this problem, this study introduces the "IoT-based reefer container management system", The proposed system which is attached to reefer container collects and transmits data on the temperature, status and location of reefer container to middleware using RS-232 communication and WCDMA/GSM communication. Middleware is store the data received in the database and provide information to user in real time through the web and mobile program. At this time, users able to change setting temperature in real time from a distant place through the web program. This study tested by transit about shipment of strawberries to monitor and analyze and check the system's overall effectiveness.

Fat Client-Based Abstraction Model of Unstructured Data for Context-Aware Service in Edge Computing Environment (에지 컴퓨팅 환경에서의 상황인지 서비스를 위한 팻 클라이언트 기반 비정형 데이터 추상화 방법)

  • Kim, Do Hyung;Mun, Jong Hyeok;Park, Yoo Sang;Choi, Jong Sun;Choi, Jae Young
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.3
    • /
    • pp.59-70
    • /
    • 2021
  • With the recent advancements in the Internet of Things, context-aware system that provides customized services become important to consider. The existing context-aware systems analyze data generated around the user and abstract the context information that expresses the state of situations. However, these datasets is mostly unstructured and have difficulty in processing with simple approaches. Therefore, providing context-aware services using the datasets should be managed in simplified method. One of examples that should be considered as the unstructured datasets is a deep learning application. Processes in deep learning applications have a strong coupling in a way of abstracting dataset from the acquisition to analysis phases, it has less flexible when the target analysis model or applications are modified in functional scalability. Therefore, an abstraction model that separates the phases and process the unstructured dataset for analysis is proposed. The proposed abstraction utilizes a description name Analysis Model Description Language(AMDL) to deploy the analysis phases by each fat client is a specifically designed instance for resource-oriented tasks in edge computing environments how to handle different analysis applications and its factors using the AMDL and Fat client profiles. The experiment shows functional scalability through examples of AMDL and Fat client profiles targeting a vehicle image recognition model for vehicle access control notification service, and conducts process-by-process monitoring for collection-preprocessing-analysis of unstructured data.

Efficient IoT data processing techniques based on deep learning for Edge Network Environments (에지 네트워크 환경을 위한 딥 러닝 기반의 효율적인 IoT 데이터 처리 기법)

  • Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.20 no.3
    • /
    • pp.325-331
    • /
    • 2022
  • As IoT devices are used in various ways in an edge network environment, multiple studies are being conducted that utilizes the information collected from IoT devices in various applications. However, it is not easy to apply accurate IoT data immediately as IoT data collected according to network environment (interference, interference, etc.) are frequently missed or error occurs. In order to minimize mistakes in IoT data collected in an edge network environment, this paper proposes a management technique that ensures the reliability of IoT data by randomly generating signature values of IoT data and allocating only Security Information (SI) values to IoT data in bit form. The proposed technique binds IoT data into a blockchain by applying multiple hash chains to asymmetrically link and process data collected from IoT devices. In this case, the blockchainized IoT data uses a probability function to which a weight is applied according to a correlation index based on deep learning. In addition, the proposed technique can expand and operate grouped IoT data into an n-layer structure to lower the integrity and processing cost of IoT data.

Recent Progress in Micro In-Mold Process Technologies and Their Applications (마이크로 인몰드 공정기술 기반 전자소자 제조 및 응용)

  • Sung Hyun Kim;Young Woo Kwon;Suck Won Hong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.1-12
    • /
    • 2023
  • In the current era of the global mobile smart device revolution, electronic devices are required in all spaces that people interact with. The establishment of the internet of things (IoT) among smart devices has been recognized as a crucial objective to advance towards creating a comfortable and sustainable future society. In-mold electronic (IME) processes have gained significant industrial significance due to their ability to utilize conventional high-volume methods, which involve printing functional inks on 2D substrates, thermoforming them into 3D shapes, and injection-molded, manufacturing low-cost, lightweight, and functional components or devices. In this article, we provide an overview of IME and its latest advances in application. We review biomimetic nanomaterials for constructing self-supporting biosensor electronic materials on the body, energy storage devices, self-powered devices, and bio-monitoring technology from the perspective of in-mold electronic devices. We anticipate that IME device technology will play a critical role in establishing a human-machine interface (HMI) by converging with the rapidly growing flexible printed electronics technology, which is an integral component of the fourth industrial revolution.

Low-Complexity Deeply Embedded CPU and SoC Implementation (낮은 복잡도의 Deeply Embedded 중앙처리장치 및 시스템온칩 구현)

  • Park, Chester Sungchung;Park, Sungkyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.699-707
    • /
    • 2016
  • This paper proposes a low-complexity central processing unit (CPU) that is suitable for deeply embedded systems, including Internet of things (IoT) applications. The core features a 16-bit instruction set architecture (ISA) that leads to high code density, as well as a multicycle architecture with a counter-based control unit and adder sharing that lead to a small hardware area. A co-processor, instruction cache, AMBA bus, internal SRAM, external memory, on-chip debugger (OCD), and peripheral I/Os are placed around the core to make a system-on-a-chip (SoC) platform. This platform is based on a modified Harvard architecture to facilitate memory access by reducing the number of access clock cycles. The SoC platform and CPU were simulated and verified at the C and the assembly levels, and FPGA prototyping with integrated logic analysis was carried out. The CPU was synthesized at the ASIC front-end gate netlist level using a $0.18{\mu}m$ digital CMOS technology with 1.8V supply, resulting in a gate count of merely 7700 at a 50MHz clock speed. The SoC platform was embedded in an FPGA on a miniature board and applied to deeply embedded IoT applications.