• 제목/요약/키워드: internal stability

검색결과 1,114건 처리시간 0.027초

토사 절토사면 안정성 영향인자의 민감도 분석 (Sensitivity Analyses of Influencing Factors on Stability in Soil Cut Slope)

  • 유남재;박병수;전상현;조한기
    • 산업기술연구
    • /
    • 제26권B호
    • /
    • pp.73-81
    • /
    • 2006
  • A sensitivity analysis about effects of influencing factors on the stability of Soil cut slope was performed. Slope stability analyses were carried out under dry, rainy and seismic conditions. Dominant factors controlling the slope stability were chosen such as cohesion and internal friction angle, unit weight of soil, water table and seismic horizontal coefficient used for the slope stability during earthquake. Parametric stability analysis with those factors was performed for sensitivity analysis. As results of analyzing the sensitivity of factors under dry and rainy conditions, effects of cohesion, internal friction angle and unit weight of soil on the stability of slope are more critical in the dry condition than in the rainy condition. Cohesion and internal friction angle are more dominant factors influencing the slope stability irrespective of dry or rainy conditions than unit weight of soil and the horizontal seismic coefficient. The unit weight and the horizontal seismic coefficient affects crucially the stability according to conditions of slope formation and dry or rainy seasons. For the effect of horizontal seismic coefficient on stability of slope, safety factor of slope is not affected significantly by dry or rainy conditions. However, increase of the horizontal seismic coefficient under the rainy condition floes reduce the safety factor significantly rather than the dry condition. Therefore, it is needed that the location of the water table is assigned appropriately to satisfy the required safety factor of stability in the case of checking slope stability for the rainy and seismic conditions.

  • PDF

Stability analysis of the ball after contacting with the earth in the volleyball game: A multi-physics simulation

  • Yang Sun;Yuhan Lin;Yuehong Ma
    • Structural Engineering and Mechanics
    • /
    • 제85권6호
    • /
    • pp.809-823
    • /
    • 2023
  • In this work, dynamic stability analysis of the ball after contacting with the earth in the volleyball game is presented. Via spherical shell coordinate, the governing equations and general boundary conditions of the ball after contacting with the earth in the volleyball game is studied. Via Comsol multi-physics simulation, some results are presented and a verification between the outcomes is studied. Harmonic differential quadrature method (HDQM) is utilized to solve the dynamic equations with the aid of boundary nodes of the current spherical shell structure. Finally, the results demonstrated that thickness, mass of the ball and internal pressure of the ball alters the frequency response of the structure. One important results of this study is influence of the internal pressure. Higher internal pressure causes lower frequency and hence reduces the stability of the ball.

내부감쇠가 있는 축비대칭 구동축의 안정성 해석 (Stability Analysis of an Asymmetric Shaft with Internal Damping)

  • 신응수
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.8-14
    • /
    • 2013
  • This paper intends to provide the whirling characteristics of an asymmetric rotor-shaft system with a non-ideal DC motor. The equations of motion have been derived in terms of system parameters such as the internal/external damping, the asymmetry and the motor voltage. By imposing the conditions that the motor input power should be balanced by the dissipated power, steadystate whirling characteristics are obtained such as the whirling amplitude, the whirling frequency and the stability diagrams. Results show that the whirling stability is affected by the internal/external damping and the asymmetry as well as the motor voltage. Also, the whirling amplitude at the steadystate is increased and the motor speed is lowered as the internal damping becomes higher or the external damping is reduced. In addition, the asymmetry causes the variation of the whirling orbit, which becomes splitted into two distinct trajectories. Finally, non-ideal characteristics of the DC motor is found to reduce the whirling motion in case of steadystate whirling with high asymmetry and high internal damping.

Evaluation of thermal stability of quasi-isotropic composite/polymeric cylindrical structures under extreme climatic conditions

  • Gadalla, Mohamed;El Kadi, Hany
    • Structural Engineering and Mechanics
    • /
    • 제32권3호
    • /
    • pp.429-445
    • /
    • 2009
  • Thermal stability of quasi-isotropic composite and polymeric structures is considered one of the most important criteria in predicting life span of building structures. The outdoor applications of these structures have raised some legitimate concerns about their durability including moisture resistance and thermal stability. Exposure of such quasi-isotropic composite/polymeric structures to various and severe climatic conditions such as heat flux and frigid climate would change the material behavior and thermal viability and may lead to the degradation of material properties and building durability. This paper presents an analytical model for the generalized problem. This model accommodates the non-linearity and the non-homogeneity of the internal heat generated within the structure and the changes, modification to the material constants, and the structural size. The paper also investigates the effect of the incorporation of the temperature and/or material constant sensitive internal heat generation with four encountered climatic conditions on thermal stability of infinite cylindrical quasi-isotropic composite/polymeric structures. This can eventually result in the failure of such structures. Detailed critical analyses for four case studies which consider the population of the internal heat generation, cylindrical size, material constants, and four different climatic conditions are carried out. For each case of the proposed boundary conditions, the critical thermal stability parameter is determined. The results of this paper indicate that the thermal stability parameter is critically dependent on the cylinder size, material constants/selection, the convective heat transfer coefficient, subjected heat flux and other constants accrued from the structure environment.

하악골 양측 하악지 시상분할 골절단술 후 흡수성 고정의 안정성에 관한 연구 (The study of stability of absorbable internal fixation after mandibular bilateral sagittal split ramal osteotomy)

  • 최병환;박수원;장수미;손한나;박봉찬;손장호;조영철;성일용
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제36권4호
    • /
    • pp.255-261
    • /
    • 2010
  • Introduction: To evaluate the skeletal stability after a bilateral sagittal split osteotomy (BSSO) setback of the mandible fixed with a biodegradable internal fixation device or metal internal fixation device. Materials and Methods: Thirty consecutive patients underwent mandibular setback via BSSO. Fifteen patients were fixed with a biodegradable internal fixation device or metal internal fixation device respectively. Posteroanterior (PA) and lateral cephalograms were taken preoperatively and at two days, 5.5 months and 14.5 months postoperatively. The relevant skeletal points were traced and digitized to evaluate the skeletal changes postoperatively. The relapse rates were analyzed and compared statistically. Results: There was no statistically significant differences in postoperative stability between the two groups.(P<0.05) Conclusion: The biodegradable internal fixation device may make an effective device alternative to a metal internal fixation device for setback BSSO.

내부 압력을 받는 구조물의 용접 부 설계 검증 (Weld Zone Design Verification of Structure which is Receiving Internal Pressure)

  • 박정선;임종빈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1425-1429
    • /
    • 2003
  • In this study, when structure which is combined by welding is receiving internal pressure, finite element analysis to confirm stability of structure and reliability of welding part is achieved. And we analyze the results. Also, if stability of the structure and reliability of the welding part are not defined, research that look for method to change design to receive stability and reliability is achieved.

  • PDF

실록산 올리고머가 에폭시 수지의 열안정성 및 내부응력에 미치는 영향 (Effect of Siloxane Oligomer on Thermal Stability and Internal Stress of Epoxy Resins)

  • 곽근호;박수진;박준하;김공수
    • 공업화학
    • /
    • 제10권5호
    • /
    • pp.701-706
    • /
    • 1999
  • 실록산 올리고머가 에폭시 수지의 열안정성 및 내부 응력에 미치는 영향에 대해서 고찰하였다. 분자 말단에 에폭시기를 갖는 실록산-에폭시 중합체를 실록산-DDM 예비 중합체와 DGEBA계 에폭시 수지를 반응시켜 제조하였다. TGA 데이터를 사용하여 열분해 개시 온도(initial decomposition temperature, IDT), 최대 중량 감소 시의 온도(temperature of maximum rate of weight loss, $T_{max}$), 적분 열분해 진행 온도(integral procedural decomposition temperature, IPDT), 그리고 분해 활성화 에너지($E_t$) 등을 구한 후 측정된 열안정성은 실록산 올리고머의 함량이 증가함에 따라 증가하였으며 5wt%의 실록산 올리고머를 함유한 조성에서 최대값을 나타내었다. 본 블렌드의 열팽창 계수(coefficient of thermal expansion, ${\alpha}_r$)와 굴곡 탄성률($E_r$)로부터 내부응력을 구하였으며, 실록산 올리고머의 함량이 증가할수록 ${\alpha}_r$$E_r$가 동시에 감소해 내부응력이 규칙적으로 저하되었다.

  • PDF

비선형 불확실성을 갖는 내연기관의 강인한 토크제어 (Robust Torque Control for an Internal Combustion Engine with Nonlinear Uncertainty)

  • 김영복;김준효
    • 동력기계공학회지
    • /
    • 제13권6호
    • /
    • pp.43-50
    • /
    • 2009
  • If an internal combustion engine is operated by consolidated control, the minimum fuel consumption is achieved satisfying the demanded objectives. For this, it is necessary that the engine is operated on the ideal operating line which satisfies minimum fuel consumption. In this context of view, there are many tries to achieve given object. However, the parameter in the internal combustion engines are variable and depend on the operating points. Therefore, it is necessary to cope with the uncertainties such that the optimal operating may be possible. From this point of view, this paper gives a controller design method and a robust stability condition for engine torque control which satisfies the given control performance and robust stability in the presence of physical parameter perturbation. Exactly, the present paper considers a robust stability of this 2DOF servosystem with nonlinear type uncertainty in the engine system, and a robust stability condition for the servosystem is introduced. This result guarantees that if the plant uncertainty is in the permissible set defined by the given condition then a gain tuning can be carried out to suppress the influence of the plant uncertainties.

  • PDF

내연기관의 강인한 토크제어를 위한 제어계 설계법 (Design of Robust Torque Controller for an Internal Combustion Engine with Uncertainty)

  • 김영복;정정순;이권순;강희영
    • 제어로봇시스템학회논문지
    • /
    • 제16권11호
    • /
    • pp.1029-1037
    • /
    • 2010
  • If an internal combustion engine is operated by consolidated control, the minimum fuel consumption is achieved and the demanded objectives are satisfied. For this, it is necessary that the engine is operated on the ideal operating line which satisfies minimum fuel consumption. In this context of view, there are many tries to achieve given object. However, the parameters in the internal combustion engines are variable and depend on the operating points. Therefore, it is necessary to cope with the uncertainties such that the optimal operating may be possible. From this point of view, this paper gives a controller design method and a robust stability condition for engine torque control which satisfies the given control performance and robust stability in the presence of physical parameter perturbation. Exactly, in this paper, we consider the robust stability problem of this 2DOF servosystem with nonlinear type uncertainty in the engine system, and a robust stability condition for the servosystem is shown. This result guarantees that if the plant uncertainty is in the permissible set defined by the given condition, then a gain tuning can be carried out to suppress the influence of the plant uncertainties.

다단식 보강토 옹벽 설계사례에 관한 고찰 (A Case Study on Design of Geosynthetic-Reinforced Segmental Retaining Walls)

  • 박시삼;조삼덕;박두희;장기수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.168-175
    • /
    • 2008
  • The method of reinforced earth walls has grown remarkably and the frequency of utilization has been increased on a national scale thereafter introduced in the middle 1980s in Korea. Furthermore the construction case of the extensive Geosynthetic-Reinforced Segmental Retaining Walls had been increased. Currently, the design criterion of FHWA and NCMA mainly used in Korea suggest determining the horizontal distance of the upper/lower retaining wall based on the study results of the internal stability and the external stability of Segmental Retaining Walls but in many cases are not suitable for the actual situation in Korea. Therefore, in this study reviewed the design criterion of Geosynthetic-Reinforced Segmental Retaining Walls, performed the internal and external stability in Paju, Gyeonggi-do based on the design criterion of FHWA and NCMA, suggested the modified design criterion of FHWA with analyzing the results, and performed the stability analysis for the internal and external stability and the compound failure. Moreover for the confirmation of the modified FHWA design standard, the suggestion and the analysis of the numerical analysis approaching method using shear strength reduction technique were performed and the design cases utilized the modified FHWA design standard based on the study analysis were introduced.

  • PDF