• 제목/요약/키워드: internal resistance of a battery

검색결과 66건 처리시간 0.028초

시멘트기반 배터리 개발을 위한 Carbon Black 및 MWCNT 혼입 시멘트 복합체의 전기적 특성 분석 (The Electrical Properties of Cementitious Composites with Carbon Black and MWCNT for the Development of Cement-Based Battery)

  • 이주하
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.212-213
    • /
    • 2018
  • The cementitious composites have been developed to satisfy various demands of the construction market. The conductive concrete, which is a carbon-based cementitious composite, was used for the deicing or the detecting the internal crack. The cement-based battery is a technology that applies the basic concept of the alkaline battery to these conductive concretes. The cementitious composites could have a function as batteries, through a mixing of anode and cathode, which were consist of the zinc and manganese dioxide powder. The carbon-based materials, which have a significant effect on electrical properties, could be considered as the main variable in cement-based batteries. Therefore, in this study, the effects of carbon-based materials were investigated. Two types of materials, including the Carbon black and Multi-walled carbon nanotube(MWCNT), were considered as the main variables. From the experiment results, the electrical characteristics such as resistance, voltage, and current were compared according to the age.

  • PDF

Effect of Carbon Fiber Layer on Electrochemical Properties of Activated Carbon Electrode

  • Jong kyu Back;Jihyeon Ryu;Yong-Ho Park;Ick-Jun Kim;Sunhye Yang
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.184-193
    • /
    • 2023
  • This study investigates the effects of a carbon fiber layer formed on the surface of an etched aluminum current collector on the electrochemical properties of the activated carbon electrodes for an electric double layer capacitor. A particle size analyzer, field-emission SEM, and nitrogen adsorption/desorption isotherm analyzer are employed to analyze the structure of the carbon fiber layer. The electric and electrochemical properties of the activated carbon electrodes using a carbon fiber layer are evaluated using an electrode resistance meter and a charge-discharge tester, respectively. To uniformly coat the surface with carbon fiber, we applied a planetary mill process, adjusted the particle size, and prepared the carbon paste by dispersing in a binder. Subsequently, the carbon paste was coated on the surface of the etched aluminum current collector to form the carbon under layer, after which an activated carbon slurry was coated to form the electrodes. Based on the results, the interface resistance of the EDLC cell made of the current collector with the carbon fiber layer was reduced compared to the cell using the pristine current collector. The interfacial resistance decreased from 0.0143 Ω·cm2 to a maximum of 0.0077 Ω·cm2. And degradation reactions of the activated carbon electrodes are suppressed in the 3.3 V floating test. We infer that it is because the improved electric network of the carbon fiber layer coated on the current collector surface enhanced the electron collection and interfacial diffusion while protecting the surface of the cathode etched aluminum; thereby suppressing the formation of Al-F compounds.

MCFC의 분극특성에 관한 연구 (A Study on Polarization of MCFC)

  • 엄승욱;김귀열;윤문수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.1242-1244
    • /
    • 1993
  • As increasing of internal resistance value at MCFC electrode, out voltage of battery is decreased currently. We measured overpotential and IR drop which consist of resistance factors in MCFC electrode, and calculated out voltage from open circuit voltage.

  • PDF

Maximum Power Recovery of Regenerative Braking in Electric Vehicles Based on Switched Reluctance Drive

  • Namazi, Mohammad Masoud;Saghaiannejad, Seyed Morteza;Rashidi, Amir;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.800-811
    • /
    • 2018
  • This paper presents a regenerative braking control scheme for Switched Reluctance Machine (SRM) drive in Electric Vehicles (EVs). The main purpose is to maximize the recovered energy during battery charging by taking into account the nonlinear physical characteristics of the Switched Reluctance Machine. The proposed regenerative braking method employs the back-EMF in the generation process as a complicated position-dependent voltage source. The proposed maximum power recovery (MPR) operation of the regenerative braking is first based on the maximization of the extracted power from the machine and then the maximization of the power transferred to the battery. The maximum power extraction (MPE) from SRM is based on maximizing the energy conversion ratio by the calculation of the optimum PWM switching duty cycle, turn-on, and turn-off angles. By using the impedance matching theorem that allows the maximum power transfer (MPT) of the MPE, the proposed MPR is achieved. The parametric averaged value modeling of the machine phase currents in the chopping control mode is used for MPR realization. By following this model, a nonlinear equivalent input resistance is derived for the battery internal resistance matching. The effectiveness of the proposed regenerative braking method is demonstrated through simulation results and experimental implementation.

리튬 배터리 등가모델의 정확도 개선을 위한 SOC 계수 보정법 (A SOC Coefficient Factor Calibration Method to improve accuracy Of The Lithium Battery Equivalence Model)

  • 이대건;정원재;장종은;박준석
    • 전자공학회논문지
    • /
    • 제54권4호
    • /
    • pp.99-107
    • /
    • 2017
  • 본 논문은 기존의 리튬 배터리(lithium battery) 등가모델의 정확도 개선을 위한 배터리 모델 계수 보정기법을 제안한다. 전기자동차 등 다양한 산업분야에 사용되는 리튬 배터리의 배터리 셀간 잔존용량(SOC, state of charge) 동일하게 유지하여 배터리 수명의 단축을 최소화하기 위해 BMS(battery management system)가 연구 개발 되었지만, 배터리 셀 전압 기반의 셀 밸런싱(cell balancing) 동작으로 내부저항 및 커패시터에 따른 SOC 변화를 따라가지 못한다. 배터리 내부저항 및 커패시터에 따른 배터리 SOC 추정을 위해 다양한 배터리 등가모델이 연구되었지만, 모든 배터리에 동일하게 적용하는 것은 한계가 있으며 특히 과도상태의 배터리 상태 추정이 어렵다. 기존의 배터리 전기적 등가모델 연구는 1종의 배터리를 대상으로 5~10% 오차율로 충 방전 동적특성을 모사하며 서로 다른 전기적 특성을 갖는 실제 배터리에 적용이 부적합하다. 따라서 본 논문에서는 모델 및 용량이 다른 실제 배터리 운용환경에 적합하며 오차율 5%이하의 동적특성 모사가 가능한 배터리 모델 계수 보정 알고리즘을 제안한다. 제안하는 배터리 모델 계수 보정법 검증을 위해 3.7 V 정격전압, 280 mAh, 1600 mAh 용량의 리튬 배터리를 사용하였으며, 리튬 배터리의 전기적 등가 모델로 2단 RC Tank 모델을 사용하였다. 또한 0.25C, 0.5C, 0.75C, 1C 4가지 C-rate를 사용하여 배터리 충 방전 실험 및 모델검증을 진행하였으며 제안하는 배터리 모델 계수 보정 알고리즘을 통해 구현한 두 종류의 배터리 모델의 배터리 충 방전 특성 및 과도상태 특성의 오차율은 최대 2.13%이다.

Polyaniline의 합성 및 Polyaniline전지의 특성연구 (A Study on the Synthesis of polyaniline and Characteristics of Polyaniline Battery)

  • 문성인;김인성;안명상;강동필;형유업;박효열;손명환;윤문수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 하계종합학술대회 논문집
    • /
    • pp.284-286
    • /
    • 1989
  • This paper describes the synthesis method of polyaniline and the characteristics of polyaniline/Zn and polyaniline/Li secondary batteries. Polyaniline was synthesized chemical or electrochemical method and then used as cathod active materials to investigate the characteristics of polyaniline/Zn and polyaniline/Li secondary batteries. Characteristics of polyaniline/Zn battery was affected by additives such as graphite powder and carbon black. Internal resistance, energy density and energy efficiency of polyaniline/Li secondary battery were $167{\Omega}$, 140.7 Wh/kg and 95.6%, respectively.

  • PDF

DEVELOPMENT OF INTELLIGENT POWER UNIT FOR HYBRID FOUR-DOOR SEDAN

  • Aitaka, K.;Hosoda, M.;Nomura, T.
    • International Journal of Automotive Technology
    • /
    • 제4권2호
    • /
    • pp.57-64
    • /
    • 2003
  • The Intelligent Power Unit (IPU) utilized in Honda's Civic Hybrid Integrated Motor Assist (IMA) system was developed with the aim of making every component lighter, more compact and more efficient than those in the former model. To reduce energy loss, inverter efficiency was increased by fine patterning of the Insulated Gate Bipolar Transistor (IGBT) chips, 12V DC-DC converter efficiency was increased by utilizing soft-switching, and the internal resistance of the IMA battery was lowered by modifying the electrodes and the current collecting structure. These improvements reduced the amount of heat generated by the unit components and made it possible to combine the previously separated Power Control Unit (PCU) and battery cooling systems into a single system. Consolidation of these two cooling circuits into one has reduced the volume of the newly developed IPU by 42% compared to the former model.

이차전지 원료 해쇄용 Grinding Disc Assembly 품질 시험에 관한 연구 (A Study on the Quality Test of Grinding Disk Assembly for Crushing Material in Secondary Battery)

  • 한상필;이동혁
    • Design & Manufacturing
    • /
    • 제17권2호
    • /
    • pp.42-46
    • /
    • 2023
  • Currently, fossil resources are depleting rapidly. We are looking for energy to replace fossil fuels. They are trying to use electricity to replace internal combustion locomotives. Secondary battery raw materials and chemical additives are pulverized by the high-speed rotation of the grinding disc of the Classifier Separator Mill. Grinding Disc Assembly requires characteristics to withstand abrasion, corrosion, high-speed rotational force and impact. Domestic and foreign grinding discs were analyzed through abrasion resistance, hardness, bending strength, and tensile adhesion strength tests.

최소 자승법을 이용한 하이브리드용 리튬이온 배터리 모델링 및 특성분석 (Modeling and Characteristic Analysis of HEV Li-ion Battery Using Recursive Least Square Estimation)

  • 김호기;허상진;강구배
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.130-136
    • /
    • 2009
  • A lumped parameter model of Li-ion battery in hybrid electric vehicle(HEV) is constructed and system parameters are identified by using recursive least square estimation for different C-rates, SOCs and temperatures. The system characteristics of pole and zero in frequency domain are analyzed with the parameters obtained from different conditions. The parameterized model of Li-ion battery indicates highly dependant of temperatures. The system pole and internal resistance changes 6.6 and 18 times at $-20^{\circ}C$, comparing with those at $25^{\circ}C$, respectively. These results will be utilized on constructing model-based state observer or an on-line identification and an adaptation of the model parameters in battery management systems for hybrid electric vehicle applications.

연료전지 하이브리드 차량의 효율적인 작동을 위한 배터리 충전 시기에 대한 연구 (A Study of Battery Charging Time for Efficient Operation of Fuel Cell Hybrid Vehicle)

  • ;권오정;조인수;현덕수;천승호;오병수
    • 한국수소및신에너지학회논문집
    • /
    • 제20권1호
    • /
    • pp.38-44
    • /
    • 2009
  • Recently, the research focused on fuel cell hybrid vehicles (FCHVs) is becoming an attractive solution due to environmental pollution generated by fossil fuel vehicles. The proper energy control strategy will result in extending the fuel cell lifetime, increasing of energy efficiency and an improvement of vehicle performance. Battery state of charge (SoC) is an important quantity and the estimation of the SoC is also the basis of the energy control strategy for hybrid electric vehicles. Estimating the battery's SoC is complicated by the fact that the SoC depends on many factors such as temperature, battery capacitance and internal resistance. In this paper, battery charging time estimated by SoC is studied by using the speed response and current response. Hybrid system is consist of a fuel cell unit and a battery in series connection. For experiment, speed response of vehicle and current response of battery were determined under different state of charge. As the results, the optimal battery charging time can be estimated. Current response time was faster than RPM response time at low speed and vice versa at high speed.