• Title/Summary/Keyword: internal radiation exposure

Search Result 134, Processing Time 0.026 seconds

Nuclear Medicine Physics: Review of Advanced Technology

  • Oh, Jungsu S.
    • Progress in Medical Physics
    • /
    • v.31 no.3
    • /
    • pp.81-98
    • /
    • 2020
  • This review aims to provide a brief, comprehensive overview of advanced technologies of nuclear medicine physics, with a focus on recent developments from both hardware and software perspectives. Developments in image acquisition/reconstruction, especially the time-of-flight and point spread function, have potential advantages in the image signal-to-noise ratio and spatial resolution. Modern detector materials and devices (including lutetium oxyorthosilicate, cadmium zinc tellurium, and silicon photomultiplier) as well as modern nuclear medicine imaging systems (including positron emission tomography [PET]/computerized tomography [CT], whole-body PET, PET/magnetic resonance [MR], and digital PET) enable not only high-quality digital image acquisition, but also subsequent image processing, including image reconstruction and post-reconstruction methods. Moreover, theranostics in nuclear medicine extend the usefulness of nuclear medicine physics far more than quantitative image-based diagnosis, playing a key role in personalized/precision medicine by raising the importance of internal radiation dosimetry in nuclear medicine. Now that deep-learning-based image processing can be incorporated in nuclear medicine image acquisition/processing, the aforementioned fields of nuclear medicine physics face the new era of Industry 4.0. Ongoing technological developments in nuclear medicine physics are leading to enhanced image quality and decreased radiation exposure as well as quantitative and personalized healthcare.

Comparison of Operator Radiation Exposure Dose undergoing Cardiac Angiography and Cardiac Intervention (심장혈관 중재적 시술의 시술자 피폭 선량에 관한 연구)

  • Kim, Jungsu;Kwon, Soonmu;Jung, Haekyoung;Lee, Bongki;Ryu, Dongryeol;Kwon, Hoseok;Cho, Byungryul
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.3
    • /
    • pp.181-186
    • /
    • 2016
  • Cardiac angiography(CA) or cardiac intervention(CI) is one of the major examination methods applied to the detection of cardiovascular diseases using X-rays. These CA and CI procedures require radiation exposure to patients and physicians. We evaluated the radiation dose to cardiac operator during the each case of CA and CI procedures. The number of patients is 113 patients in CA and 34 patients in CI. Mean fluoroscopy time, mean cine time, and mean total cumulative dose area product(DAP) in patients during CA and CI was 165.9 sec vs. 1200.0 sec, 30.31 sec vs 107.5 sec, and $37130.3mGy.cm^2$ vs $213312.6mGy.cm^2$, respectively. Mean dose of thyroid, over chest apron and under chest apron in operator during CA and CI was 15.84 uSv vs 89.81 uSv, 20.16 uSv vs 123.20 uSv, and 0.30 uSv vs 2.40 uSv, respectively. Mean effective dose of operator during CI was about 6 times greater than during CA. Also there was significant inter-relationship between fluoroscopy or cine time and effective dose in operator during CA and CI(p=0.001 and p=0.001, respectively).

Natural radioactivity level in fly ash samples and radiological hazard at the landfill area of the coal-fired power plant complex, Vietnam

  • Loan, Truong Thi Hong;Ba, Vu Ngoc;Thien, Bui Ngoc
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1431-1438
    • /
    • 2022
  • In this study, natural radioactivity concentrations and dosimetric values of fly ash samples were evaluated for the landfill area of the coal-fired power plant (CFPP) complex at Binh Thuan, Vietnam. The average activity concentrations of 238U, 226Ra, 232Th and 40K were 93, 77, 92 and 938 Bq kg-1, respectively. The average results for radon dose, indoor external, internal, and total effective dose equivalent (TEDE) were 5.27, 1.22, 0.16, and 6.65 mSv y-1, respectively. The average emanation fraction for fly ash were 0.028. The excess lifetime cancer risks (ELCR) were recorded as 20.30×10-3, 4.26×10-3, 0.62×10-3, and 25.61×10-3 for radon, indoor, outdoor exposures, and total ELCR, respectively. The results indicated that the cover of shielding materials above the landfill area significantly decreased the gamma radiation from the ash and slag in the ascending order: Zeolite < PVC < Soil < Concrete. Total dose of all radionuclides in the landfill site reached its peak at 19.8 years. The obtained data are useful for evaluation of radiation safety when fly ash is used for building material as well as the radiation risk and the overload of the landfill area from operation of these plants for population and workers.

Evaluation of Radioactive Substance and Measurement of Harmfulness in Drinking Water (먹는 샘물의 방사성물질 측정 및 유해성 평가)

  • Jo, Jungwon;Lee, Sangbok;Nam, Johyeon;Noh, Eunjeong;Beak, Hyunwoo;Lee, Yejin;Lee, Joonse;Choi, Jiwon;Kim, Sungchul
    • Journal of radiological science and technology
    • /
    • v.44 no.3
    • /
    • pp.247-252
    • /
    • 2021
  • As the number of single-person households increases, the consumption of bottled water is increasing. In addition, as the public's interest in radioactivity increases, interest in the field of living radioactivity is also increasing. Since drinking water is an essential element in our daily life, it must be safe from radioactivity. In this study, gamma radiation of drinking spring water was measured and internal exposure dose evaluation was performed to determine its harmfulness. K-40 and uranium-based radioactivity analysis was performed through a high-purity germanium detector, and as a result, drinking water was detected somewhat higher than that of mixing water. Since there is no regulation on the natural radioactivity concentration in Korea, it was compared with the U.S. Environmental Protection Agency Drinking Water Regulations and World Health Organization standard. As a result, there were some items that exceeded standards. Internal exposure was evaluated according to the effective dose formula of ICRP 119. As the result was derived that a maximum of 1.17 mSv per year could be received. This result means that the dose limit for the general public may be exceeded, and it was judged that it is necessary to set an appropriate standard value and present a recommendation value through continuous monitoring in the future.

Analysis of Radioactivity Concentration in Naturally Occurring Radioactive Materials Used in Coal-Fired Plants in Korea (국내 석탄연소 발전소에서 취급하는 천연방사성물질의 방사능 농도 분석)

  • Kim, Yong Geon;Kim, Si Young;Ji, Seung Woo;Park, Il;Kim, Min Jun;Kim, Kwang Pyo
    • Journal of Radiation Industry
    • /
    • v.10 no.4
    • /
    • pp.173-179
    • /
    • 2016
  • Coals and coal ashes, raw materials and by-products, in coal-fired power plants contain naturally occurring radioactive materials (NORM). They may give rise to internal exposure to workers due to inhalation of airborne particulates containing radioactive materials. It is necessary to characterize radioactivity concentrations of the materials for assessment of radiation dose to the workers. The objective of the present study was to analyze radioactivity concentrations of coals and by-products at four coal-fired plants in Korea. High purity germanium detector was employed for analysis of uranium series, thorium series, and potassium 40 in the materials. Radioactivity concentrations of $^{226}Ra$, $^{228}Ra$, and $^{40}K$ were $2{\sim}53Bq\;kg^{-1}$, $3{\sim}64Bq\;kg^{-1}$, and $14{\sim}431Bq\;kg^{-1}$ respectively in coal samples. For coal ashes, the radioactivity concentrations were $77{\sim}133Bq\;kg^{-1}$, $77{\sim}105Bq\;kg^{-1}$, and $252{\sim}372Bq\;kg^{-1}$ in fly ash samples and $54{\sim}91Bq\;kg^{-1}$, $46{\sim}83Bq\;kg^{-1}$, and $205{\sim}462Bq\;kg^{-1}$ in bottom ash samples. For flue gas desulfurization (FGD) gypsum, the radioactivity concentrations were $3{\sim}5Bq\;kg^{-1}$, $2{\sim}3Bq\;kg^{-1}$, and $22{\sim}47Bq\;kg^{-1}$. Radioactivity was enhanced in coal ash compared with coal due to combustion of organic matters in the coal. Radioactivity enhancement factors for $^{226}Ra$, $^{228}Ra$, and $^{40}K$ were 2.1~11.3, 2.0~13.1, and 1.4~7.4 for fly ash and 2.0~9.2, 2.0~10.0, 1.9~7.7 for bottom ash. The database established in this study can be used as basic data for internal dose assessment of workers at coal-fired power plants. In addition, the findings can be used as a basic data for development of safety standard and guide of Natural Radiation Safety Management Act.

Determination of indoor doses and excess lifetime cancer risks caused by building materials containing natural radionuclides in Malaysia

  • Abdullahi, Shittu;Ismail, Aznan Fazli;Samat, Supian
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.325-336
    • /
    • 2019
  • The activity concentrations of $^{226}Ra$, $^{232}Th$, and $^{40}K$ from 102 building materials samples were determined using a high-purity germanium (HPGe) detector. The activity concentrations were evaluated for possible radiological hazards to the human health. The excess lifetime cancer risks (ELCR) were also estimated, and the average values were recorded as $0.42{\pm}0.24{\times}10^{-3}$, $3.22{\pm}1.83{\times}10^{-3}$, and $3.65{\pm}1.85{\times}10^{-3}$ for outdoor, indoor, and total ELCR respectively. The activity concentrations were further subjected to RESRAD-BUILD computer code to evaluate the long-term radiation exposure to a dweller. The indoor doses were assessed from zero up to 70 years. The simulation results were $92{\pm}59$, $689{\pm}566$, and $782{\pm}569{\mu}Sv\;y^{-1}$ for indoor external, internal, and total effective dose equivalent (TEDE) respectively. The results reported were all below the recommended maximum values. Therefore, the radiological hazards attributed to building materials under study are negligible.

The Development of a Non-Intrusive Test of Check Valve Using Acoustics and Magnetics

  • Sim, Cheul-Muu;Choi, Ha-Lim;Baik, Heung-Ki
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1E
    • /
    • pp.9-14
    • /
    • 1997
  • Check valves used in industrial and Nuclear Power Plant safety systems are susceptible to failure modes generally associated with wear of internal parts. Specifically, hinge pins, disc studs, pistons, and other mechanical parts may degrade over time, and in some cases, may which might produce a disabling event leading to plant or process shutdown. The primary diagnostic technique in the past has been to disassemble the valves. This procedure is costly, time consuming, and in the nuclear industry, it can lead to radiation exposure in some situations. Additionally repair and reassembly of a valve does not ensure proper operation. Non-intrusive diagnostic technologies including acoustics and magnetics with a digital signal analysis allow to evaluate check valve performance without a disassembly and is able to help the user detect degraded valve conditions.

  • PDF

Small Bowel Tumors and Polyposis: How to Approach and Manage? (소장 종양과 용종증: 접근 방법과 관리)

  • Ko, Bong Min
    • The Korean Journal of Gastroenterology
    • /
    • v.72 no.6
    • /
    • pp.277-280
    • /
    • 2018
  • Although small bowel the mainly occupies the most part of the gastrointestinal tract, small intestine tumors are rare, insidious in clinical presentation, and frequently represent a diagnostic and management challenge. Small bowel tumors are generally classified as epithelial, mesenchymal, lymphoproliferative, or metastatic. Familial adenomatous polyposis and Peutz-Jeghers syndrome are the most common inherited intestinal polyposis syndromes. Until the advent of capsule endoscopy (CE) and device-assisted enteroscopy (DAE) coupled with the advances in radiology, physicians had limited diagnostic examination for small bowel examination. CE and new radiologic imaging techniques have made it easier to detect small bowel tumors. DAE allows more diagnosis and deeper reach in small intestine. CT enteroclysis/CT enterography (CTE) provides information about adjacent organs as well as pictures of the intestinal lumen side. Compared to CTE, Magnetic resonance enteroclysis/enterography provides the advantage of soft tissue contrast and multiplane imaging without radiation exposure. Treatment and prognosis are tailored to each histological subtype of tumors.

Use of Acellular Biologic Matrix Envelope for Cardiac Implantable Electronic Device Placement to Correct Migration into Submuscular Breast Implant Pocket

  • Peyton Terry;Kenneth Bilchick;Chris A. Campbell
    • Archives of Plastic Surgery
    • /
    • v.50 no.2
    • /
    • pp.156-159
    • /
    • 2023
  • Breast implants whether used for cosmetic or reconstructive purposes can be placed in pockets either above or below the pectoralis major muscle, depending on clinical circumstances such as subcutaneous tissue volume, history of radiation, and patient preference. Likewise, cardiac implantable electronic devices (CIEDs) can be placed above or below the pectoralis major muscle. When a patient has both devices, knowledge of the pocket location is important for procedural planning and for durability of device placement and performance. Here, we report a patient who previously failed subcutaneous CIED placement due to incision manipulation with prior threatened device exposure requiring plane change to subpectoral pocket. Her course was complicated by submuscular migration of the CIED into her breast implant periprosthetic pocket. With subcutaneous plane change being inadvisable due to patient noncompliance, soft tissue support of subpectoral CIED placement with an acellular biologic matrix (ABM) was performed. Similar to soft tissue support used for breast implants, submuscular CIED neo-pocket creation with ABM was performed with durable CIED device positioning confirmed at 9 months postprocedure.

Evaluation of Internal Dosimetry according to Various Radionuclides Conditions in Nuclear Medicine Myocardial Scan: Monte Carlo Simulation (심근 핵의학 검사에서 다양한 방사성핵종 조건에 따른 내부피폭선량 평가: 몬테카를로 시뮬레이션)

  • Min-Gwan Lee;Chanrok Park
    • Journal of radiological science and technology
    • /
    • v.47 no.3
    • /
    • pp.213-218
    • /
    • 2024
  • The myocardial nuclear medicine examination is widely performed to diagnose myocardium disease using various radionuclides. Although image quality according to radionuclides has improved, the radiation exposure for target organ as well as peripheral organs should be considered. Here, the aim of this study was to evaluate absorbed dose (Gy) for peripheral organs in myocardial nuclear medicine scan from myocardium according to various scan environments based on Monte Carlo simulation. The simulation environment was modeled 5 cases, which were considered by radionuclides, number of injections, and radiodosage. In addition, the each radionuclide simulation such as distribution fraction was considered by recommended standard protocol, and the mesh computational female phantom, which is provided by International Commission on Radiological Protection (ICRP) 145, was used using the particle and heavy ion transport code system (PHITS) version 3.33. Based on the results, the closer to the myocardium, the higher the absorbed dose values. In addition, application for dual injection for radionuclides leaded to high absorbed dose compared with single injection for radionuclide. Consequently, there is difference for absorbed dose according to radionuclides, number of injections, and radiodosage. To detect the accurate diseased area, acquisition for improved image quality is crucial process by injecting radionuclides, however, we need to consider absorbed dose both target and peripheral inner organs from radionuclides in terms radiation protection for patient.