DOI QR코드

DOI QR Code

Determination of indoor doses and excess lifetime cancer risks caused by building materials containing natural radionuclides in Malaysia

  • Abdullahi, Shittu (Nuclear Science Program, Faculty of Science and Technology, Universiti Kebangsaan Malaysia) ;
  • Ismail, Aznan Fazli (Nuclear Science Program, Faculty of Science and Technology, Universiti Kebangsaan Malaysia) ;
  • Samat, Supian (Centre for Frontier Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
  • Received : 2018.07.10
  • Accepted : 2018.09.26
  • Published : 2019.02.25

Abstract

The activity concentrations of $^{226}Ra$, $^{232}Th$, and $^{40}K$ from 102 building materials samples were determined using a high-purity germanium (HPGe) detector. The activity concentrations were evaluated for possible radiological hazards to the human health. The excess lifetime cancer risks (ELCR) were also estimated, and the average values were recorded as $0.42{\pm}0.24{\times}10^{-3}$, $3.22{\pm}1.83{\times}10^{-3}$, and $3.65{\pm}1.85{\times}10^{-3}$ for outdoor, indoor, and total ELCR respectively. The activity concentrations were further subjected to RESRAD-BUILD computer code to evaluate the long-term radiation exposure to a dweller. The indoor doses were assessed from zero up to 70 years. The simulation results were $92{\pm}59$, $689{\pm}566$, and $782{\pm}569{\mu}Sv\;y^{-1}$ for indoor external, internal, and total effective dose equivalent (TEDE) respectively. The results reported were all below the recommended maximum values. Therefore, the radiological hazards attributed to building materials under study are negligible.

Keywords

References

  1. EC, Radiation Protection 112: Radiological Protection principles Concerning the Natural Radioactivity of Building Materials, Finland, 1999. https://ec.europa.eu/energy/sites/ener/files/documents/112.pdf. (Accessed 20 July 2017).
  2. G.M. Brahmanandhan, J. Malathi, D. Khanna, S. Selvasekarapandian, N. Nidhya, R. Usharani, M.T. Jose, V. Meenakshisundaram, Natural radioactivity and indoor radiation measurements in buildings and building materials in Gobichettipalayam town, J. Radioanal. Nucl. Chem. 274 (2007) 373-377, https://doi.org/10.1007/s10967-007-1125-x.
  3. X. Lu, S. Chao, F. Yang, Determination of natural radioactivity and associated radiation hazard in building materials used in Weinan, China, Radiat, Phys. Chem. 99 (2014) 62-67, https://doi.org/10.1016/j.radphyschem.2014.02.021.
  4. L. Xinwei, Natural radioactivity in some building materials and by-products of Shaanxi, China, J. Radioanal. Nucl. Chem. 262 (2004) 775-777, https://doi.org/10.1007/s10967-004-0509-4.
  5. ICRP Publication 115, Lung Cancer Risk from Radon and Progeny and Statement on Radon, 2010, https://doi.org/10.1016/j.icrp.2011.08.011.
  6. G.K. Pantelic, D.J. Todorovic, J.D. Nikolic, M.M. Rajaci, M.M. Jankovic, N.B. Sarap, Measurement of radioactivity in building materials in Serbia, J. Radioanal. Nucl. Chem. 303 (2015) 2517-2522, https://doi.org/10.1007/s10967-014-3745-2.
  7. S. Abdullahi, A.F. Ismail, S.B. Samat, M.S. Yasir, Assessment of natural radioactivity and associated radiological risks from tiles used in Kajang, Malaysia, in: American Institute of Physics, 2018, https://doi.org/10.1063/1.5027916.
  8. M.A.E. Abdel-Rahman, S.A. El-Mongy, Analysis of radioactivity levels and hazard assessment of black sand samples from Rashid area, Egypt, Nucl. Eng. Technol. 49 (2017) 1752-1757, https://doi.org/10.1016/j.net.2017.07.020.
  9. H.H. Hussain, R.O. Hussain, R.M. Yousef, Q. Shamkhi, Natural radioactivity of some local building materials in the middle Euphrates of Iraq, J. Radioanal. Nucl. Chem. 284 (2010) 43-47, https://doi.org/10.1007/s10967-010-0464-1.
  10. E.S. Joel, O. Maxwell, O.O. Adewoyin, C.O. Ehi-Eromosele, Z. Embong, F. Oyawoye, Assessment of natural radioactivity in various commercial tiles used for building purposes in Nigeria, Methods (Orlando) 5 (2018) 8-19, https://doi.org/10.1016/j.mex.2017.12.002.
  11. UNSCEAR, Sources and Effects of Ionizing Radiation (Exposures from Natural Radiation Sources), New York, 2000.
  12. UNSCEAR, Sources and Effects of Ionizing Radiation (Exposure from Natural Sources of Radiation), New York, 1993. http://www.unscear.org/docs/publications/1993/UNSCEAR_1993_Annex-A.pdf. (Accessed 29 September 2017).
  13. E.S. Joel, O. Maxwell, O.O. Adewoyin, C.O. Ehi-Eromosele, Z. Embong, M.A. Saeed, Assessment of natural radionuclides and its radiological hazards from tiles made in Nigeria, Radiat. Phys. Chem. 144 (2018) 43-47, https://doi.org/10.1016/j.radphyschem.2017.11.003.
  14. B.R. Kerur, T. Rajeshwari, R. Siddanna, A.S. Kumar, Implication and hazard of radiation level in the building materials, Acta Geophys. 61 (2013) 1046-1056, https://doi.org/10.2478/s11600-013-0109-1.
  15. C.W. Lee, S. Choi, H.R. Kim, Analysis and radiation dose assessment of222Rn in indoor air at schools: case study at Ulju County, Korea, Nucl. Eng. Technol. 50 (2018) 806-813, https://doi.org/10.1016/j.net.2018.03.020.
  16. N. Khalid, A.A. Majid, A.F. Ismail, M.S. Yasir, R. Yahaya, I.A. Mustafa, Variation of radon Emanation in workplaces as a function of room parameters, Malaysian J. Anal. Sci. 17 (2013) 59-70.
  17. A.A. Majid, A.F. Ismail, M.S. Yasir, R. Yahaya, I. Bahari, Radiological dose assessment of naturally occurring radioactive materials in concrete building materials, J. Radioanal. Nucl. Chem. 297 (2013) 277-284, https://doi.org/10.1007/s10967-012-2387-5.
  18. A.F. Ismail, M.S. Yasir, A. Ab, R. Yahaya, I. Bahari, Radiological hazard of natural radionuclide in Portland cement of Peninsular Malaysia, Sains Malays. 38 (2009) 407-411.
  19. M.S. Yasir, A. Ab Majid, R. Yahaya, Study of natural radionuclides and its radiation hazard index in Malaysian building materials, J. Radioanal. Nucl. Chem. 273 (2007) 539-541, https://doi.org/10.1007/s10967-007-0905-7.
  20. M.Y.M. Ali, M.M. Hanafiah, M.F. Khan, Potential factors that impact the radon level and the prediction of ambient dose equivalent rates of indoor microenvironments, Sci. Total Environ. 626 (2018) 1-10, https://doi.org/10.1016/j.scitotenv.2018.01.080.
  21. A.F. Ismail, A. Shittu, S. Samat, M.S. Yasir, Radiological dose assessment of natural radioactivity in Malaysia's tiles using resrad-build computer code, Sains Malays. 47 (2018) 1017-1023. https://doi.org/10.17576/jsm-2018-4705-18.
  22. MNCR, Malaysian National Cancer Registry Report 2007-2011, Putrajaya, 2016. http://nci.moh.gov.my.
  23. IAEA, Measurement of Radionuclides in Food and the Environment, IAEA, Vienna, 1989. http://www-pub.iaea.org/MTCD/Publications/PDF/trs295_web.pdf. (Accessed 10 October 2017).
  24. CANBERRA, Spectrum Analysis, Mirion Technol, 2010. http://www.canberra.com/literature/fundamental-principles/pdf/Spectrum-Analysis.pdf. (Accessed 7 April 2018).
  25. ICRP Publication 103, The 2007 Recommendation International Commission on Radiological Protection, 2007. http://journals.sagepub.com/doi/pdf/10.1177/ANIB_37_2-4. (Accessed 14 May 2018).
  26. G. Senthilkumar, Y. Raghu, S. Sivakumar, A. Chandrasekaran, D. Prem Anand, R. Ravisankar, Natural radioactivity measurement and evaluation of radiological hazards in some commercial flooring materials used in Thiruvannamalai, Tamilnadu, India, J. Radiat. Res. Appl. Sci. 7 (2014) 116-122, https://doi.org/10.1016/j.jrras.2013.12.009.
  27. J. Al-zahrani, A. El-taher, Natural radioactivity levels and elemental analysis of cement by gamma-ray spectrometer and neutron activation analysis, Am. Sci. Res. J. Eng. Technol. Sci. 30 (2017) 173-183. http://asrjetsjournal.org/.
  28. I.F. Al-hamarneh, Radiological hazards for marble, granite and ceramic tiles used in buildings in Riyadh, Saudi Arabia, Environ. Earth Sci. 76 (2017) 516, https://doi.org/10.1007/s12665-017-6849-5.
  29. J. Ge, J. Zhang, Natural radioactivity and radiation hazards of building materials in Anhui Province, China, J. Radioanal. Nucl. Chem. 304 (2015) 609-613, https://doi.org/10.1007/s10967-014-3891-6.
  30. A.S. Arabi, I.I. Funtua, B.B.M. Dewu, A.M. Muhammad, Background radiation and radiological hazard associated with local building materials around Zaria, Nigeria, Radiochemistry 57 (2015) 207-212, https://doi.org/10.1134/S1066362215020149.
  31. K. Asaduzzaman, F. Mannan, M.U. Khandaker, M.S. Farook, A. Elkezza, Y.M. Amin, S. Sharma, H.A. Kassim, Assessment of natural radioactivity levels and potential radiological risks of common building materials used in bangladeshi dwellings, PloS One (2015) 1-16, https://doi.org/10.1371/journal.pone.0140667.
  32. B. Mavi, I. Akkurt, Natural radioactivity and radiation hazards in some building materials used in Isparta, Turkey, Radiat, Phys. Chem. 79 (2010) 933-937, https://doi.org/10.1016/j.radphyschem.2010.03.019.
  33. N.K. Ahmed, Measurement of natural radioactivity in building materials in Qena city, Upper Egypt, J. Environ. Radioact. 83 (2005) 91-99, https://doi.org/10.1016/j.jenvrad.2005.03.002.
  34. S. Turhan, I.H. Arikan, H. Demirel, N. Gungor, Radiometric analysis of raw materials and end products in the Turkish ceramics industry, Radiat. Phys. Chem. 80 (2011) 620-625, https://doi.org/10.1016/j.radphyschem.2011.01.007.
  35. K. Asaduzzaman, M.U. Khandaker, Y.M. Amin, D.A. Bradley, Natural radioactivity levels and radiological assessment of decorative building materials in Bangladesh, Indoor Built Environ. 25 (2016) 541-550, https://doi.org/10.1177/1420326X14562048.
  36. S. Righi, R. Guerra, M. Jeyapandian, S. Verita, A. Albertazzi, Natural radioactivity in Italian ceramic tiles, Radioprotection 44 (2009) 413-419, https://doi.org/10.1051/radiopro/20095078.
  37. H. Papaefthymiou, O. Gouseti, Natural radioactivity and associated radiation hazards in building materials used in Peloponnese, Greece, Radiat. Meas. 43 (2008) 1453-1457, https://doi.org/10.1016/j.radmeas.2008.03.032.
  38. K.R. Mahmoud, Radionuclide content of local and imported cements used in Egypt, J. Radiol. Prot. 27 (2007) 69-77, https://doi.org/10.1088/0952-4746/27/1/004.
  39. G. Viruthagiri, B. Rajamannan, K. Suresh Jawahar, Radioactivity and associated radiation hazards in ceramic raw materials and end products, Radiat. Protect. Dosim. 157 (2013) 383-391, https://doi.org/10.1093/rpd/nct149.
  40. S. Turhan, Radiological impacts of the usability of clay and kaolin as raw material in manufacturing of structural building materials in Turkey, J. Radiol. Prot. 29 (2009) 75-83, https://doi.org/10.1088/0952-4746/29/1/005.
  41. R.S. Mohammed, R.S. Ahmed, Estimation of excess lifetime cancer risk and radiation hazard indices in southern Iraq, Environ. Earth Sci. 76 (2017), https://doi.org/10.1007/s12665-017-6616-7.
  42. V. Ramasamy, G. Suresh, V. Meenakshisundaram, V. Ponnusamy, Horizontal and vertical characterization of radionuclides and minerals in river sediments, Appl. Radiat. Isot. 69 (2011) 184-195, https://doi.org/10.1016/j.apradiso.2010.07.020.
  43. R.L. Njinga, V.M. Tshivhase, Lifetime cancer risk due to gamma radioactivity in soils from Tudor Shaft mine environs, South Africa, J. Radiat. Res. Appl. Sci. 9 (2016) 310-315, https://doi.org/10.1016/j.jrras.2016.02.003.
  44. H. Taskin, M. Karavus, P. Ay, A. Topuzoglu, S. Hidiroglu, G. Karahan, Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey, J. Environ. Radioact. 100 (2009) 49-53, https://doi.org/10.1016/j.jenvrad.2008.10.012.
  45. B.E. Ozdis, N.F. Cam, B. Canbaz Ozturk, Assessment of natural radioactivity in cements used as building materials in Turkey, J. Radioanal. Nucl. Chem. 311 (2017) 307-316, https://doi.org/10.1007/s10967-016-5074-0.
  46. R. Ravisankar, K. Vanasundari, M. Suganya, Y. Raghu, A. Rajalakshmi, A. Chandrasekaran, S. Sivakumar, J. Chandramohan, P. Vijayagopal, B. Venkatraman, Multivariate statistical analysis of radiological data of building materials used in Tiruvannamalai, Tamilnadu, India, Appl. Radiat. Isot. 85 (2014) 114-127, https://doi.org/10.1016/j.apradiso.2013.12.005.
  47. A.M.A. Adam, M.A.H. Eltayeb, Multivariate statistical analysis of radioactive variables in two phosphate ores from Sudan, J. Environ. Radioact. 107 (2012) 23-43, https://doi.org/10.1016/j.jenvrad.2011.11.021.
  48. A.L. Do Carmo Leal, D. Da Costa Lauria, Assessement of doses to members of the public arising from the use of ornamental rocks in residences, J. Radiol. Prot. 36 (2016) 680-694, https://doi.org/10.1088/0952-4746/36/3/680.
  49. R. Ravisankar, K. Vanasundari, A. Chandrasekaran, A. Rajalakshmi, M. Suganya, P. Vijayagopal, V. Meenakshisundaram, Measurement of natural radioactivity in building materials of Namakkal, Tamil Nadu, India using gamma-ray spectrometry, Appl. Radiat. Isot. 70 (2012) 699-704, https://doi.org/10.1016/j.apradiso.2011.12.001.
  50. C. Yu, D.J. LePoire, J.-J. Cheng, E. Gnanapragasam, S. Kamboj, J. Arnish, B.M. Biwer, A.J. Zielen, W. a. Williams, a. W. Iii, H.T. Peterson Jr., User's Manual RESRAD-BUILD Version 3, 2003. http://www.doe.gov/bridge.
  51. S. Pepin, Using RESRAD-BUILD to assess the external dose from the natural radioactivity of building materials, Construct. Build. Mater. 168 (2018) 1003-1007, https://doi.org/10.1016/j.conbuildmat.2018.02.015.
  52. A.O. Pavelescu, V. Popa, Modelling of the dose rates and risks arising from hotcells clean-up activities in the decommissioning of the VVR-S research reactor, Rom. Rep. Phys. 64 (2012) 33-49. http://www.rrp.infim.ro/2012_64_1/art04Pavelescu.pdf. (Accessed 23 June 2018).
  53. H. Yoshino, S. Murakami, S.-I. Akabayashi, T. Kurabuchi, S. Kato, S.-I. Tanabe, K. Ikeda, H. Osawa, T. Sawachi, A. Hukushima, M. Adachi, Survey on Minimum Ventilation Rate of Residential Buildings in Fifteen Countries, (n.d.). http://www.aivc.org/sites/default/files/members_area/medias/pdf/Conf/2004/2004028_Yoshino.pdf (accessed June 23, 2018).
  54. IAEA, Measurement and Calculation of Radon Releases from, NORM Residues, Vienna, 2013.
  55. B.K. Sahoo, D. Nathwani, K.P. Eappen, T. V Ramachandran, J.J. Gaware, Y.S. Mayya, Estimation of radon emanation factor in Indian building materials, Radiat. Meas. 42 (2007) 1422-1425, https://doi.org/10.1016/j.radmeas.2007.04.002.
  56. UNSCEAR, Sources, Effects and Risks of Ionising Radiation (Exposures from Natural Sources of Radiation), New York, 1988.
  57. S.D.E. Martino, C. Sabbarese, G. Monetti, Radon emanation and exhalation rates from soils measured with an electrostatic collector, Appl. Radiat. Isot. 49 (1998) 407-413. https://doi.org/10.1016/S0969-8043(96)00300-4
  58. P. Bossew, The radon emanation power of building materials, soils and rocks, Appl. Radiat. Isot. 59 (2003) 389-392, https://doi.org/10.1016/j.apradiso.2003.07.001.
  59. NEA-OECD, Exposure to Radiation from Natural Radioactivity in Building Materials, 1979, pp. 1-34. https://www.oecd-nea.org/rp/reports/1979/exposure-to-radiation-1979.pdf.

Cited by

  1. Assessment of radiation risk and radon exhalation rate for granite used in the construction industry vol.321, pp.2, 2019, https://doi.org/10.1007/s10967-019-06592-9
  2. ASSESSMENT OF NATURALLY OCCURRING RADIONUCLIDES IN MALAYSIA’S BUILDING MATERIALS vol.186, pp.4, 2019, https://doi.org/10.1093/rpd/ncz125
  3. Radiological impacts in the high-level natural radiation exposure area residents in the Ramsar, Iran vol.135, pp.3, 2019, https://doi.org/10.1140/epjp/s13360-020-00306-x
  4. Radiological hazard analysis of Malaysia’s ceramic materials using generic and RESRAD-BUILD computer code approach vol.324, pp.1, 2019, https://doi.org/10.1007/s10967-020-07070-3
  5. Determination of factors affecting indoor doses from Malaysia’s ceramic tiles containing natural radionuclides vol.785, 2020, https://doi.org/10.1088/1757-899x/785/1/012012
  6. Radioactivity of building materials in Serbia and assessment of radiological hazard of gamma radiation and radon exhalation vol.324, pp.3, 2020, https://doi.org/10.1007/s10967-020-07130-8
  7. Estimation of natural radionuclide and exhalation rates of environmental radioactive pollutants from the soil of northern India vol.52, pp.6, 2020, https://doi.org/10.1016/j.net.2019.11.016
  8. Assessment of natural radioactivity and its radiological hazards in several types of cement used in Senegal vol.2, pp.12, 2019, https://doi.org/10.1007/s42452-020-03904-7
  9. Evaluation of Radiological Health Risk Associated with Indian Tiles Available in Nigerian Markets vol.6, pp.3, 2019, https://doi.org/10.25046/aj060330
  10. Assessing energy efficiency in the Asia-Pacific region and the mediating role of environmental pollution: evidence from a super-efficiency model with a weighting preference scheme vol.28, pp.35, 2019, https://doi.org/10.1007/s11356-021-13663-6
  11. Health Hazards Assessment and Geochemistry of ElSibai-Abu ElTiyur Granites, Central Eastern Desert, Egypt vol.11, pp.24, 2021, https://doi.org/10.3390/app112412002