Browse > Article
http://dx.doi.org/10.1016/j.net.2018.09.017

Determination of indoor doses and excess lifetime cancer risks caused by building materials containing natural radionuclides in Malaysia  

Abdullahi, Shittu (Nuclear Science Program, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
Ismail, Aznan Fazli (Nuclear Science Program, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
Samat, Supian (Centre for Frontier Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
Publication Information
Nuclear Engineering and Technology / v.51, no.1, 2019 , pp. 325-336 More about this Journal
Abstract
The activity concentrations of $^{226}Ra$, $^{232}Th$, and $^{40}K$ from 102 building materials samples were determined using a high-purity germanium (HPGe) detector. The activity concentrations were evaluated for possible radiological hazards to the human health. The excess lifetime cancer risks (ELCR) were also estimated, and the average values were recorded as $0.42{\pm}0.24{\times}10^{-3}$, $3.22{\pm}1.83{\times}10^{-3}$, and $3.65{\pm}1.85{\times}10^{-3}$ for outdoor, indoor, and total ELCR respectively. The activity concentrations were further subjected to RESRAD-BUILD computer code to evaluate the long-term radiation exposure to a dweller. The indoor doses were assessed from zero up to 70 years. The simulation results were $92{\pm}59$, $689{\pm}566$, and $782{\pm}569{\mu}Sv\;y^{-1}$ for indoor external, internal, and total effective dose equivalent (TEDE) respectively. The results reported were all below the recommended maximum values. Therefore, the radiological hazards attributed to building materials under study are negligible.
Keywords
Annual effective dose; Excess lifetime cancer risk; External dose; Internal dose; Total effective dose equivalent;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M.Y.M. Ali, M.M. Hanafiah, M.F. Khan, Potential factors that impact the radon level and the prediction of ambient dose equivalent rates of indoor microenvironments, Sci. Total Environ. 626 (2018) 1-10, https://doi.org/10.1016/j.scitotenv.2018.01.080.   DOI
2 A.F. Ismail, A. Shittu, S. Samat, M.S. Yasir, Radiological dose assessment of natural radioactivity in Malaysia's tiles using resrad-build computer code, Sains Malays. 47 (2018) 1017-1023. https://doi.org/10.17576/jsm-2018-4705-18.   DOI
3 MNCR, Malaysian National Cancer Registry Report 2007-2011, Putrajaya, 2016. http://nci.moh.gov.my.
4 IAEA, Measurement of Radionuclides in Food and the Environment, IAEA, Vienna, 1989. http://www-pub.iaea.org/MTCD/Publications/PDF/trs295_web.pdf. (Accessed 10 October 2017).
5 CANBERRA, Spectrum Analysis, Mirion Technol, 2010. http://www.canberra.com/literature/fundamental-principles/pdf/Spectrum-Analysis.pdf. (Accessed 7 April 2018).
6 ICRP Publication 103, The 2007 Recommendation International Commission on Radiological Protection, 2007. http://journals.sagepub.com/doi/pdf/10.1177/ANIB_37_2-4. (Accessed 14 May 2018).
7 G. Senthilkumar, Y. Raghu, S. Sivakumar, A. Chandrasekaran, D. Prem Anand, R. Ravisankar, Natural radioactivity measurement and evaluation of radiological hazards in some commercial flooring materials used in Thiruvannamalai, Tamilnadu, India, J. Radiat. Res. Appl. Sci. 7 (2014) 116-122, https://doi.org/10.1016/j.jrras.2013.12.009.   DOI
8 J. Al-zahrani, A. El-taher, Natural radioactivity levels and elemental analysis of cement by gamma-ray spectrometer and neutron activation analysis, Am. Sci. Res. J. Eng. Technol. Sci. 30 (2017) 173-183. http://asrjetsjournal.org/.
9 I.F. Al-hamarneh, Radiological hazards for marble, granite and ceramic tiles used in buildings in Riyadh, Saudi Arabia, Environ. Earth Sci. 76 (2017) 516, https://doi.org/10.1007/s12665-017-6849-5.   DOI
10 J. Ge, J. Zhang, Natural radioactivity and radiation hazards of building materials in Anhui Province, China, J. Radioanal. Nucl. Chem. 304 (2015) 609-613, https://doi.org/10.1007/s10967-014-3891-6.   DOI
11 B. Mavi, I. Akkurt, Natural radioactivity and radiation hazards in some building materials used in Isparta, Turkey, Radiat, Phys. Chem. 79 (2010) 933-937, https://doi.org/10.1016/j.radphyschem.2010.03.019.   DOI
12 EC, Radiation Protection 112: Radiological Protection principles Concerning the Natural Radioactivity of Building Materials, Finland, 1999. https://ec.europa.eu/energy/sites/ener/files/documents/112.pdf. (Accessed 20 July 2017).
13 G.M. Brahmanandhan, J. Malathi, D. Khanna, S. Selvasekarapandian, N. Nidhya, R. Usharani, M.T. Jose, V. Meenakshisundaram, Natural radioactivity and indoor radiation measurements in buildings and building materials in Gobichettipalayam town, J. Radioanal. Nucl. Chem. 274 (2007) 373-377, https://doi.org/10.1007/s10967-007-1125-x.   DOI
14 X. Lu, S. Chao, F. Yang, Determination of natural radioactivity and associated radiation hazard in building materials used in Weinan, China, Radiat, Phys. Chem. 99 (2014) 62-67, https://doi.org/10.1016/j.radphyschem.2014.02.021.   DOI
15 K.R. Mahmoud, Radionuclide content of local and imported cements used in Egypt, J. Radiol. Prot. 27 (2007) 69-77, https://doi.org/10.1088/0952-4746/27/1/004.   DOI
16 G. Viruthagiri, B. Rajamannan, K. Suresh Jawahar, Radioactivity and associated radiation hazards in ceramic raw materials and end products, Radiat. Protect. Dosim. 157 (2013) 383-391, https://doi.org/10.1093/rpd/nct149.   DOI
17 S. Turhan, Radiological impacts of the usability of clay and kaolin as raw material in manufacturing of structural building materials in Turkey, J. Radiol. Prot. 29 (2009) 75-83, https://doi.org/10.1088/0952-4746/29/1/005.   DOI
18 R.S. Mohammed, R.S. Ahmed, Estimation of excess lifetime cancer risk and radiation hazard indices in southern Iraq, Environ. Earth Sci. 76 (2017), https://doi.org/10.1007/s12665-017-6616-7.
19 A.S. Arabi, I.I. Funtua, B.B.M. Dewu, A.M. Muhammad, Background radiation and radiological hazard associated with local building materials around Zaria, Nigeria, Radiochemistry 57 (2015) 207-212, https://doi.org/10.1134/S1066362215020149.   DOI
20 K. Asaduzzaman, F. Mannan, M.U. Khandaker, M.S. Farook, A. Elkezza, Y.M. Amin, S. Sharma, H.A. Kassim, Assessment of natural radioactivity levels and potential radiological risks of common building materials used in bangladeshi dwellings, PloS One (2015) 1-16, https://doi.org/10.1371/journal.pone.0140667.
21 N.K. Ahmed, Measurement of natural radioactivity in building materials in Qena city, Upper Egypt, J. Environ. Radioact. 83 (2005) 91-99, https://doi.org/10.1016/j.jenvrad.2005.03.002.   DOI
22 S. Turhan, I.H. Arikan, H. Demirel, N. Gungor, Radiometric analysis of raw materials and end products in the Turkish ceramics industry, Radiat. Phys. Chem. 80 (2011) 620-625, https://doi.org/10.1016/j.radphyschem.2011.01.007.   DOI
23 B.E. Ozdis, N.F. Cam, B. Canbaz Ozturk, Assessment of natural radioactivity in cements used as building materials in Turkey, J. Radioanal. Nucl. Chem. 311 (2017) 307-316, https://doi.org/10.1007/s10967-016-5074-0.   DOI
24 V. Ramasamy, G. Suresh, V. Meenakshisundaram, V. Ponnusamy, Horizontal and vertical characterization of radionuclides and minerals in river sediments, Appl. Radiat. Isot. 69 (2011) 184-195, https://doi.org/10.1016/j.apradiso.2010.07.020.   DOI
25 R.L. Njinga, V.M. Tshivhase, Lifetime cancer risk due to gamma radioactivity in soils from Tudor Shaft mine environs, South Africa, J. Radiat. Res. Appl. Sci. 9 (2016) 310-315, https://doi.org/10.1016/j.jrras.2016.02.003.   DOI
26 H. Taskin, M. Karavus, P. Ay, A. Topuzoglu, S. Hidiroglu, G. Karahan, Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey, J. Environ. Radioact. 100 (2009) 49-53, https://doi.org/10.1016/j.jenvrad.2008.10.012.   DOI
27 L. Xinwei, Natural radioactivity in some building materials and by-products of Shaanxi, China, J. Radioanal. Nucl. Chem. 262 (2004) 775-777, https://doi.org/10.1007/s10967-004-0509-4.   DOI
28 K. Asaduzzaman, M.U. Khandaker, Y.M. Amin, D.A. Bradley, Natural radioactivity levels and radiological assessment of decorative building materials in Bangladesh, Indoor Built Environ. 25 (2016) 541-550, https://doi.org/10.1177/1420326X14562048.   DOI
29 S. Righi, R. Guerra, M. Jeyapandian, S. Verita, A. Albertazzi, Natural radioactivity in Italian ceramic tiles, Radioprotection 44 (2009) 413-419, https://doi.org/10.1051/radiopro/20095078.   DOI
30 H. Papaefthymiou, O. Gouseti, Natural radioactivity and associated radiation hazards in building materials used in Peloponnese, Greece, Radiat. Meas. 43 (2008) 1453-1457, https://doi.org/10.1016/j.radmeas.2008.03.032.   DOI
31 ICRP Publication 115, Lung Cancer Risk from Radon and Progeny and Statement on Radon, 2010, https://doi.org/10.1016/j.icrp.2011.08.011.   DOI
32 G.K. Pantelic, D.J. Todorovic, J.D. Nikolic, M.M. Rajaci, M.M. Jankovic, N.B. Sarap, Measurement of radioactivity in building materials in Serbia, J. Radioanal. Nucl. Chem. 303 (2015) 2517-2522, https://doi.org/10.1007/s10967-014-3745-2.
33 S. Abdullahi, A.F. Ismail, S.B. Samat, M.S. Yasir, Assessment of natural radioactivity and associated radiological risks from tiles used in Kajang, Malaysia, in: American Institute of Physics, 2018, https://doi.org/10.1063/1.5027916.   DOI
34 M.A.E. Abdel-Rahman, S.A. El-Mongy, Analysis of radioactivity levels and hazard assessment of black sand samples from Rashid area, Egypt, Nucl. Eng. Technol. 49 (2017) 1752-1757, https://doi.org/10.1016/j.net.2017.07.020.   DOI
35 H.H. Hussain, R.O. Hussain, R.M. Yousef, Q. Shamkhi, Natural radioactivity of some local building materials in the middle Euphrates of Iraq, J. Radioanal. Nucl. Chem. 284 (2010) 43-47, https://doi.org/10.1007/s10967-010-0464-1.   DOI
36 E.S. Joel, O. Maxwell, O.O. Adewoyin, C.O. Ehi-Eromosele, Z. Embong, F. Oyawoye, Assessment of natural radioactivity in various commercial tiles used for building purposes in Nigeria, Methods (Orlando) 5 (2018) 8-19, https://doi.org/10.1016/j.mex.2017.12.002.
37 UNSCEAR, Sources and Effects of Ionizing Radiation (Exposures from Natural Radiation Sources), New York, 2000.
38 A.L. Do Carmo Leal, D. Da Costa Lauria, Assessement of doses to members of the public arising from the use of ornamental rocks in residences, J. Radiol. Prot. 36 (2016) 680-694, https://doi.org/10.1088/0952-4746/36/3/680.   DOI
39 R. Ravisankar, K. Vanasundari, M. Suganya, Y. Raghu, A. Rajalakshmi, A. Chandrasekaran, S. Sivakumar, J. Chandramohan, P. Vijayagopal, B. Venkatraman, Multivariate statistical analysis of radiological data of building materials used in Tiruvannamalai, Tamilnadu, India, Appl. Radiat. Isot. 85 (2014) 114-127, https://doi.org/10.1016/j.apradiso.2013.12.005.   DOI
40 A.M.A. Adam, M.A.H. Eltayeb, Multivariate statistical analysis of radioactive variables in two phosphate ores from Sudan, J. Environ. Radioact. 107 (2012) 23-43, https://doi.org/10.1016/j.jenvrad.2011.11.021.   DOI
41 B.K. Sahoo, D. Nathwani, K.P. Eappen, T. V Ramachandran, J.J. Gaware, Y.S. Mayya, Estimation of radon emanation factor in Indian building materials, Radiat. Meas. 42 (2007) 1422-1425, https://doi.org/10.1016/j.radmeas.2007.04.002.   DOI
42 UNSCEAR, Sources and Effects of Ionizing Radiation (Exposure from Natural Sources of Radiation), New York, 1993. http://www.unscear.org/docs/publications/1993/UNSCEAR_1993_Annex-A.pdf. (Accessed 29 September 2017).
43 R. Ravisankar, K. Vanasundari, A. Chandrasekaran, A. Rajalakshmi, M. Suganya, P. Vijayagopal, V. Meenakshisundaram, Measurement of natural radioactivity in building materials of Namakkal, Tamil Nadu, India using gamma-ray spectrometry, Appl. Radiat. Isot. 70 (2012) 699-704, https://doi.org/10.1016/j.apradiso.2011.12.001.   DOI
44 C. Yu, D.J. LePoire, J.-J. Cheng, E. Gnanapragasam, S. Kamboj, J. Arnish, B.M. Biwer, A.J. Zielen, W. a. Williams, a. W. Iii, H.T. Peterson Jr., User's Manual RESRAD-BUILD Version 3, 2003. http://www.doe.gov/bridge.
45 S. Pepin, Using RESRAD-BUILD to assess the external dose from the natural radioactivity of building materials, Construct. Build. Mater. 168 (2018) 1003-1007, https://doi.org/10.1016/j.conbuildmat.2018.02.015.   DOI
46 A.O. Pavelescu, V. Popa, Modelling of the dose rates and risks arising from hotcells clean-up activities in the decommissioning of the VVR-S research reactor, Rom. Rep. Phys. 64 (2012) 33-49. http://www.rrp.infim.ro/2012_64_1/art04Pavelescu.pdf. (Accessed 23 June 2018).
47 H. Yoshino, S. Murakami, S.-I. Akabayashi, T. Kurabuchi, S. Kato, S.-I. Tanabe, K. Ikeda, H. Osawa, T. Sawachi, A. Hukushima, M. Adachi, Survey on Minimum Ventilation Rate of Residential Buildings in Fifteen Countries, (n.d.). http://www.aivc.org/sites/default/files/members_area/medias/pdf/Conf/2004/2004028_Yoshino.pdf (accessed June 23, 2018).
48 IAEA, Measurement and Calculation of Radon Releases from, NORM Residues, Vienna, 2013.
49 UNSCEAR, Sources, Effects and Risks of Ionising Radiation (Exposures from Natural Sources of Radiation), New York, 1988.
50 S.D.E. Martino, C. Sabbarese, G. Monetti, Radon emanation and exhalation rates from soils measured with an electrostatic collector, Appl. Radiat. Isot. 49 (1998) 407-413.   DOI
51 P. Bossew, The radon emanation power of building materials, soils and rocks, Appl. Radiat. Isot. 59 (2003) 389-392, https://doi.org/10.1016/j.apradiso.2003.07.001.   DOI
52 NEA-OECD, Exposure to Radiation from Natural Radioactivity in Building Materials, 1979, pp. 1-34. https://www.oecd-nea.org/rp/reports/1979/exposure-to-radiation-1979.pdf.
53 N. Khalid, A.A. Majid, A.F. Ismail, M.S. Yasir, R. Yahaya, I.A. Mustafa, Variation of radon Emanation in workplaces as a function of room parameters, Malaysian J. Anal. Sci. 17 (2013) 59-70.
54 E.S. Joel, O. Maxwell, O.O. Adewoyin, C.O. Ehi-Eromosele, Z. Embong, M.A. Saeed, Assessment of natural radionuclides and its radiological hazards from tiles made in Nigeria, Radiat. Phys. Chem. 144 (2018) 43-47, https://doi.org/10.1016/j.radphyschem.2017.11.003.   DOI
55 B.R. Kerur, T. Rajeshwari, R. Siddanna, A.S. Kumar, Implication and hazard of radiation level in the building materials, Acta Geophys. 61 (2013) 1046-1056, https://doi.org/10.2478/s11600-013-0109-1.   DOI
56 C.W. Lee, S. Choi, H.R. Kim, Analysis and radiation dose assessment of222Rn in indoor air at schools: case study at Ulju County, Korea, Nucl. Eng. Technol. 50 (2018) 806-813, https://doi.org/10.1016/j.net.2018.03.020.   DOI
57 A.A. Majid, A.F. Ismail, M.S. Yasir, R. Yahaya, I. Bahari, Radiological dose assessment of naturally occurring radioactive materials in concrete building materials, J. Radioanal. Nucl. Chem. 297 (2013) 277-284, https://doi.org/10.1007/s10967-012-2387-5.   DOI
58 A.F. Ismail, M.S. Yasir, A. Ab, R. Yahaya, I. Bahari, Radiological hazard of natural radionuclide in Portland cement of Peninsular Malaysia, Sains Malays. 38 (2009) 407-411.
59 M.S. Yasir, A. Ab Majid, R. Yahaya, Study of natural radionuclides and its radiation hazard index in Malaysian building materials, J. Radioanal. Nucl. Chem. 273 (2007) 539-541, https://doi.org/10.1007/s10967-007-0905-7.   DOI