DOI QR코드

DOI QR Code

Evaluation of Internal Dosimetry according to Various Radionuclides Conditions in Nuclear Medicine Myocardial Scan: Monte Carlo Simulation

심근 핵의학 검사에서 다양한 방사성핵종 조건에 따른 내부피폭선량 평가: 몬테카를로 시뮬레이션

  • Min-Gwan Lee (Department of Radiological Science, Eulji University) ;
  • Chanrok Park (Department of Radiological Science, Eulji University)
  • 이민관 (을지대학교 방사선학과) ;
  • 박찬록 (을지대학교 방사선학과)
  • Received : 2024.05.09
  • Accepted : 2024.05.28
  • Published : 2024.06.30

Abstract

The myocardial nuclear medicine examination is widely performed to diagnose myocardium disease using various radionuclides. Although image quality according to radionuclides has improved, the radiation exposure for target organ as well as peripheral organs should be considered. Here, the aim of this study was to evaluate absorbed dose (Gy) for peripheral organs in myocardial nuclear medicine scan from myocardium according to various scan environments based on Monte Carlo simulation. The simulation environment was modeled 5 cases, which were considered by radionuclides, number of injections, and radiodosage. In addition, the each radionuclide simulation such as distribution fraction was considered by recommended standard protocol, and the mesh computational female phantom, which is provided by International Commission on Radiological Protection (ICRP) 145, was used using the particle and heavy ion transport code system (PHITS) version 3.33. Based on the results, the closer to the myocardium, the higher the absorbed dose values. In addition, application for dual injection for radionuclides leaded to high absorbed dose compared with single injection for radionuclide. Consequently, there is difference for absorbed dose according to radionuclides, number of injections, and radiodosage. To detect the accurate diseased area, acquisition for improved image quality is crucial process by injecting radionuclides, however, we need to consider absorbed dose both target and peripheral inner organs from radionuclides in terms radiation protection for patient.

Keywords

Acknowledgement

This paper was supported by Eulji University in 2023.

References

  1. Gnanasegaran G, Ballinger JR. Molecular imaging agents for SPECT (and SPECT/CT). European Journal of Nuclear Medicine and Molecular Imaging. 2014;41(S1): 26-35. DOI: http://dx.doi.org/10.1007/s00259-013-2643-0.
  2. Hutton BF. The origins of SPECT and SPECT/CT. European Journal of Nuclear Medicine and MolecularImaging. 2014;41(S1):3-16. DOI: http://dx.doi.org/10.1007/s00259-013-2606-5.
  3. Mariani G, Bruselli L, Kuwert T, Kim EE, Flotats A, Israel O, et al. A review on the clinical uses of SPECT/CT. European Journal of Nuclear Medicine and Molecular Imaging. 2010;37(10):1959-85. DOI: http://dx.doi.org/10.1007/s00259-010-1390-8.
  4. Ficaro EP, Corbett JR. Advances in quantitative perfusion SPECT imaging. Journal of Nuclear Cardiology. 2004;11(1):62-70. DOI: http://dx.doi.org/10.1016/j.nuclcard.2003.10.007.
  5. Baggish AL, Boucher CA. Radiopharmaceutical agents for myocardial perfusion imaging. Circulation. 2008;118(16):1668-74. DOI: http://dx.doi.org/10.1161/CIRCULATIONAHA.108.778860
  6. Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ. Radiation dose to patients from cardiacdiagnositc imaging. Circulation. 2007;116(11):1290-305. DOI: http://dx.doi.org/10.1161/CIRCULATIONAHA.107.688101
  7. ICRP. 1990 Recommendations of the international com mission on radiological protection. ICRP Publication 60. Ann. ICRP. 1991;21(1-3):1-201. Retrieved from https://www.icrp.org/publication.asp?id=ICRP%20Publication%2060 https://doi.org/10.1016/0146-6453(91)90065-O
  8. Salari S, Khorshidi A, Soltani-Nabipour J. Simulation and assessment of 99mTc absorbed dose into internal organs from cardiac perfusion scan. Nuclear Engineering and Technology. 2023;55(1):248-53. DOI: http://dx.doi.org/10.1016/j.net.2022.08.024.
  9. Sato T, Iwamoto Y, Hashimoto S, Ogawa T, Furuta T, et al. Features of Particle and Heavy Ion Transport code System (PHITS) version. Journal of Nuclear Science and Technology. 2018;55(6):684-90. DOI: http://dx.doi.org/10.1080/00223131.2017.1419890.
  10. Cater LM, Choi C, Krebs S, Beattie BJ, Kim CH, Schoder H, et al. Patient size-dependent dosimetry methodology applied to 18F-FDG using new ICRP mesh phantoms. The Journal of Nuclear Medicine. 2021;62(12):1805-14. DOI: http://dx.doi.org/10.2967/jnumed.120.256719.
  11. Sato T, Furuta T, Liu Y, Naka S, Nagamori S, Kanai Y, et al. Individual dosimetry system for targeted alpha therapy based on PHITS coupled with microdosimetric kinetic model. 2021;8(1):4. DOI: http://dx.doi.org/10.1186/s40658-020-00350-7.
  12. Yeom YS, Han H, Choi C, Nguyen TT, Shin B, Lee C, et al. Posture-dependent dose coefficients for mesh-type ICRP reference computational phantoms for photon external exposures. Physics in Medicine & Biology. 2019;64(7):075018. DOI: http://dx.doi.org/10.1088/1361-6560/ab0917
  13. Carter LM, Bellamy MB, Choi C, Kim CH, Bolch WE, Jokisch D, et al. Influence of body posture on internal organ dosimetry: Radiocesium exposure modeling using novel posture-dependent mesh computational phantoms. Health Physics. 2023;125(2):137-46. DOI: http://dx.doi.org/10.1097/HP.0000000000001701
  14. ICRP. Adult mesh-type reference computational phantoms. ICRP Publication 145. Ann. ICRP. 2020;49 (3):13-201. DOI: http://dx.doi.org/10.1177/0146645319893605
  15. Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC imaging guidelines for SPECT nuclear cardiology procedures: Stress, protocols, and tracers. Journal of Nuclear Cardiology. 2016;23(3):60 6-39. DOI: http://dx.doi.org/10.1007/s12350-015-0387-x
  16. ICRP. Radiation dose to patients from radiopharmaceuticals: A compendium of current information related to frequently used substances. ICRP Publication 128. Ann. ICRP. 2015;44(2S):7-321. DOI: http://dx.doi.org/10.1177/0146645314558019
  17. Thomas SR, Stabin MG, Castronovo FP. Radiation-absorbed dose from 201Tl-thallous chloride. Journal of Nuclear Medicine. 2005;46(3):502-8. Retrieved from https://jnm.snmjournals.org/content/46/3/502
  18. Choi SG. Clinical review of the current status and utility of targeted alpha therapy. Journal of Radiological Science and Technology. 2023;46(5):379-94. DOI: http://dx.doi.org/10.17946/JRST.2023.46.5.379
  19. Jang BJ, Nam HY, Shin HM, Yun DM, Lee SK, Jang IH, et al. Doses of pediatric and X-ray examination assistants according to changes in pediatric X-ray exposure conditions. Journal of Radiological Science and Technology. 2023;46(5):409-15. DOI: http://dx.doi.org/10.17946/JRST.2023.46.5.409