• 제목/요약/키워드: intermetallic

검색결과 784건 처리시간 0.026초

2중 Al 배선을 위한 금속층간 SOG 박막의 형성 (Formation of SOG Film between Al Metal Layers for Double metal Process)

  • 백종무;정영철;이용수;이봉현
    • 전자공학회논문지A
    • /
    • 제31A권8호
    • /
    • pp.53-61
    • /
    • 1994
  • Intermetallic dielectric layer was formed by using SiO$_2$/SOG/SiO$_2$ for aluminum based dual-metal interconnection process and its electric characteristics were evaluated. The dielectric layer was in the cost and facility point of view more useful than the insulator that was formed by etch-back process. The planarity by using SOG process was about 40% higher than that of the insulator by the CVD process. When SiO$_2$ films were deposited by the PECVD process the Al hillock formation during the next process was restrained bucause the intermetalic insulator was made at low temperature. The leakage current was 1${\times}10^{7}~1{\times}10^{-8}A/cm^{2}$ at the electric field of 10$^{5}$V/cm and breakdown filed was 4.5${\times}10^{6}~7{\times}10^{6}A/cm$. So we had confirmed that siloxane SOG was very useful for intermetallic layer material.

  • PDF

P(인)의 첨가에 따른 Sn-Ag-Cu계 및 Sn-Cu계 솔더의 특성에 관한 연구 (A Study on Characterization of Sn-Ag-Cu and Sn-Cu Lead-free Solders by Adding of P)

  • 김경대;김택관;황성진;신영의;김종민
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 춘계 기술심포지움 논문집
    • /
    • pp.104-108
    • /
    • 2002
  • This paper was investigated the lead free solder characteristics by P mass percentage chang e. Tension test, wetting balance test, spread test, and analysis of intermetallic compound after isothermal aging of Sn-2.5Ag-0.7Cu-0.005P, Sn-2.5Ag-0.7Cu-0.01P, Sn-2.5Ag-0.7Cu-0.02P, Sn-0.7Cu-0.005P were performed for estimation. By adding P on the solder alloys, it was showe d improvement of tensile strength, reduction of intermetallic compound growth and reduction of oxidization of fusible solder under wave soldering processes. After comparing solder alloy containing P with tin lead eutectic solder alloy, p containing solder alloys showed much better solderability than eutectic solder alloys.

  • PDF

기계적합금화시킨 TiNi 분말의 열처리조건에 따른 상변화 및 Al/TiNi소결체 내에서의 미세조직 특성 (Phase Changes of Mechanically Alloyed TiNi Powders by Heat-treatment and Microstructural Properties in the Al/TiNi Sintered Materials)

  • 차성수
    • 한국분말재료학회지
    • /
    • 제3권3호
    • /
    • pp.174-180
    • /
    • 1996
  • Microstructure and phase transformation of mechanically alloyed TiNi powders added to aluminium matrix for enhancing the damping properties were studied. Four compositions between 48.5 and 51.5 at% Ti intermetallic compounds were selected to control the fraction of martensite phase. Mechanically alloyed TiNi powders were heat-treated at vacuum of $10^{-6}$ torr for crystallization. Ball milled AI/TiNi composite powders were swaged at room temperature and rolled at 450 $^{\circ}C$. After mechanical alloying for 10 hours, Ti and Ni elements were alloyed completely and amorphous phase was formed. Amorphous phase was crystallized to martensite (Bl9') and austenite(B2) after heat treating for 1 hour at the temperature of 850 $^{\circ}C$, and TiNi$_3$, intermetallic compound was partially formed. Considerable amount of martensite phase was remained after swaging and rolling.

  • PDF

Ti-33.8wt% Al 금속간 화합물의 고온 산화거동 (High temperature oxidation behavior of Ti-33.8wt% Al intermetallic compounds)

  • 최송천;조현준;이동복
    • 한국표면공학회지
    • /
    • 제26권5호
    • /
    • pp.235-244
    • /
    • 1993
  • The oxidation behavior of a two-phase(Ti3Al+TiAl) intermetallic compound, Ti-33.8wt%Al, has been in-vestigated in air at 800, 900 and $^1000{\circ}C$. Though the isothermal oxidation behavior followed a parabolic law up to 100$0^{\circ}C$ indicating that protective oxide scales were formed, the cyclic oxidation behavior followed a lin-ear law in the entire temperature range tested because flaky or stratified scales were usually spalled from the surface during cooling. During oxidation at 80$0^{\circ}C$, the alloy showed excellent oxidation resistance because continuous protective Al2O3 films were formed on the outermost surface of the alloy. However, above $900^{\circ}C$, the oxidation resistance of the alloy was decreased gradually because relatively non-protective TiO2 scales as well as some of Al2O3 scales were formed on the outer oxide scale. The oxidation mechanism of the alloy at different temperature was proposed.

  • PDF

열처리에 따른 TiAl금속간화합물의 층상조직 변화 (Changes of Lamellar Structure of TiAl Intermetallic Compound Heat Treatment)

  • 신재관;정인상;박경채
    • 열처리공학회지
    • /
    • 제6권3호
    • /
    • pp.127-137
    • /
    • 1993
  • The changes of lamellar(${\alpha}_2+{\gamma}$) structure of TiAl intermetallic compound which is a high potential, high temperature aerospace material was investigated by heat treatment. The lamellar structure was short and made subgrain in prior a grains after homogenizing at 1523 K. It became longer and finer, and the subgrain went out during subsequent isothermal heatteating at 1273 K. The yield, fracture strength and strain to fracture if the heat treated specimens was increased and the hardness of them was decreased a little in the finer lamellar structure, because fine lamellar interface, sugrain boundary and grain boundary may block initiation and propagation of crack.

  • PDF

Ti-Al계 금속간화합물의 고온산화특성 (High Temperature Oxidation Characteristics of Ti-Al Intermetallic Compounds)

  • 오인석;최창우;김길무;홍준표;김종집
    • 한국표면공학회지
    • /
    • 제25권5호
    • /
    • pp.253-261
    • /
    • 1992
  • Ti-Al intermetallic compounds which can be used in gas turbine at elevated temperature were inves-tigated in order to improve oxidation resistance by the formation of protective oxide scale. Four Ti-Al alloys were prepared by plasma arc melting. As the amount of Al was increased among the alloys, oxida-tion resistance was improved by the formation of relatively purer Al2O3 layer. However, the alloys which have less amount of Al formed a duplex layer of Al2O3 and TiO2. When samples were oxidized in pure oxygen instead of air, oxidation resistance was improved because of formation of the purer Al2O3 layer.

  • PDF

Fe가 첨가된 과공정 Al-Si-Fe합금 압출재의 기계적특성 및 미세조직에 관한 연구 (Effect of Fe Addition on Mechanical Properties and Microstructure of As-Extruded Hypereutectic Al-Si-Fe Alloy)

  • 이세동;김덕현;백아름;임수근
    • 소성∙가공
    • /
    • 제28권3호
    • /
    • pp.123-129
    • /
    • 2019
  • Hypereutectic Al-Si alloys have been widely utilized for wear-resistant components in the automotive industry. In order to expand the application of Hypereutectic Al-Si alloys, the addition of alloying elements forming a stable precipitate at high temperature is required. Thermally stable inter metallic compounds can be formed through the addition of transition elements such as Fe, Ni to Al alloys. However, the amount of transition element to be added to Al alloys is limited due to their low solid solubility. Also, hypereutectic Al-Si-Fe alloys form coarse primary Si phases and needle-shaped intermetallic compounds during solidification in the general casting processes. In this study, the effects of the destruction of Intermetallic compound and Si phase are investigated via hot extrusion. Both the microstructure and mechanical properties are discussed under different extrusion conditions.

전해 도금된 주석 솔더 범프의 계면 반응과 전단 강도에 미치는 UBM의 효과 (Effect of Under Bump Metallization (UBM) on Interfacial Reaction and Shear Strength of Electroplated Pure Tin Solder Bump)

  • 김유나;구자명;박선규;정승부
    • 대한금속재료학회지
    • /
    • 제46권1호
    • /
    • pp.33-38
    • /
    • 2008
  • The interfacial reactions and shear strength of pure Sn solder bump were investigated with different under bump metallizations (UBMs) and reflow numbers. Two different UBMs were employed in this study: Cu and Ni. Cu6Sn5 and Cu3Sn intermetallic compounds (IMCs) were formed at the bump/Cu UBM interface, whereas only a Ni3Sn4 IMC was formed at the bump/Ni UBM interface. These IMCs grew with increasing reflow number. The growth of the Cu-Sn IMCs was faster than that of the Ni-Sn IMC. These interfacial reactions greatly affected the shear properties of the bumps.

Effects of Corrosion Inhibitor on Corrosion of Al-based Alloys in Ethylene Glycol-Water Coolant Environment

  • Gwang-Soo Choi;Young-Man Kim;Chan-Jin Park
    • Corrosion Science and Technology
    • /
    • 제22권5호
    • /
    • pp.305-313
    • /
    • 2023
  • The objective of this study was to investigate the effectiveness of sodium dodecyl benzene sulfonate (SDBS) as a corrosion inhibitor on the pitting corrosion behavior of aluminum alloys used in electric vehicle battery cooling systems within a mixture of ethylene glycol and water (EG-W) coolant. Potentiodynamic polarization testing revealed unstable passive film formation on the aluminum alloys in the absence of SDBS. However, the addition of SDBS resulted in a robust passive film, enhancing the pitting corrosion resistance across all examined alloys. Pitting corrosion was predominantly observed near intermetallic compounds in the presence of Cl? ions, which was attributed to galvanic interactions. Among tested alloys, A1040 demonstrated superior resistance due to its lower areal fraction of precipitates and donor density. The incorporation of SDBS inhibitors mitigated the overall pitting corrosion process by hindering Cl? ion penetration. These findings suggest that SDBS can significantly improve pitting corrosion resistance in aluminum alloys employed in battery coolant environments.