DOI QR코드

DOI QR Code

Effects of Corrosion Inhibitor on Corrosion of Al-based Alloys in Ethylene Glycol-Water Coolant Environment

  • Gwang-Soo Choi (Department of Materials Science and Engineering, Chonnam National University) ;
  • Young-Man Kim (Department of Materials Science and Engineering, Chonnam National University) ;
  • Chan-Jin Park (Department of Materials Science and Engineering, Chonnam National University)
  • Received : 2023.04.04
  • Accepted : 2023.05.16
  • Published : 2023.10.30

Abstract

The objective of this study was to investigate the effectiveness of sodium dodecyl benzene sulfonate (SDBS) as a corrosion inhibitor on the pitting corrosion behavior of aluminum alloys used in electric vehicle battery cooling systems within a mixture of ethylene glycol and water (EG-W) coolant. Potentiodynamic polarization testing revealed unstable passive film formation on the aluminum alloys in the absence of SDBS. However, the addition of SDBS resulted in a robust passive film, enhancing the pitting corrosion resistance across all examined alloys. Pitting corrosion was predominantly observed near intermetallic compounds in the presence of Cl? ions, which was attributed to galvanic interactions. Among tested alloys, A1040 demonstrated superior resistance due to its lower areal fraction of precipitates and donor density. The incorporation of SDBS inhibitors mitigated the overall pitting corrosion process by hindering Cl? ion penetration. These findings suggest that SDBS can significantly improve pitting corrosion resistance in aluminum alloys employed in battery coolant environments.

Keywords

References

  1. H. Wang, T. Tao, J. Xu, X. Mei, X. Liu, and P. Gou, Cooling capacity of a novel modular liquid-cooled battery thermal management system for cylindrical lithium ion batteries, Applied Thermal Engineering, 178, 115591 (2020). Doi: https://doi.org/10.1016/j.applthermaleng.2020.115591
  2. Z. Z. Li, T. H. Cheng, D. J. Xuan, M. Ren, G. Y. Shen, and Y. D. Shen, Optimal Design for Cooling System of Batteries Using DOE and RSM, International Journal of Precision Engineering and Manufacturing, 13, 1641 (2012). Doi: https://doi.org/10.1007/s12541-012-0215-z
  3. L. Zhao, J. Wang, Y. Li, Q. Liu, and W. Li, Experimental Investigation of a Lithium Battery Cooling System, Sustainability, 11, 5020 (2019). Doi: https://doi.org/10.3390/su11185020
  4. M. Feinauer, N. Uhlmann, C. Ziebert, and T. Blank, Simulation, Set-Up, and Thermal Characterization of a WaterCooled Li-Ion Battery System, Batteries-Basel, 8, 177 (2022). Doi: https://doi.org/10.3390/batteries8100177
  5. K. Chen, Y. Chen, Y. She, M. Song, S. Wang, and L. Chen, Construction of effective symmetrical air-cooled system for battery thermal management, Applied Thermal Engineering, 166, 114679 (2020). Doi: https://doi.org/10.1016/j.applthermaleng.2019.114679
  6. X. Wang, S. Liu, Y. Zhang, S. Lv, H. Ni, Y. Deng, and Y. Yuan, A Review of the Power Battery Thermal Management System with Different Cooling, Heating and Coupling System, Energies, 15, 1963 (2022). Doi: https://doi.org/10.3390/en15061963
  7. M. Akbarzadeh, T. Kalogiannis, J. Jaguemont, L. Jin, H. Behi, D. Karimi, H. Beheshti, J. V. Mierlo, and M. Berecibar, A comparative study between air cooling and liquid cooling thermal management systems for a high-energy lithium-ion battery module, Applied Thermal Engineering, 198, 117503 (2021). Doi: https://doi.org/10.1016/j.applthermaleng.2021.117503
  8. C. Zhang, Z. Xia, H. Gao, J. Wen, S. Chen, M. Dang, S. Gu, and J. Zhang, A Coolant Circulation Cooling System Combining Aluminum Plates and Copper Rods for Li-Ion Battery Pack, Energies, 13, 4296 (2020). Doi: https://doi.org/10.3390/en13174296
  9. Zhonghao Rao, Zhen Qian, Yong Kuang, Yimin Li, Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface, Applied Thermal Engineering, 123, 1514 (2017). Doi: https://doi.org/10.1016/j.applthermaleng.2017.06.059
  10. D. H. Shin and S. J. Kim, Effects of Chloride Concentration and Applied Current Density on Stray Current Corrosion Characteristics of 6061-T6 Al Alloy for Electric Vehicle Battery Housing, Corrosion Science and Technology, 21, 348 (2022). Doi: https://doi.org/10.14773/cst.2022.21.5.348
  11. D. H. Shin and S. J. Kim, Investigation on Electrochemical Characteristics of Battery Housing Material for Electric Vehicles in Solution Simulating an Acid Rain Environment with Chloride Concentrations, Corrosion Science and Technology, 21, 147 (2022). Doi: https://doi.org/10.14773/cst.2022.21.2.147
  12. Y. Liu and Y. F. Cheng, Inhibition of Corrosion of 3003 Aluminum Alloy in Ethylene Glycol-Water Solutions, Journal of Materials Engineering and Performance, 20, 271 (2011). Doi: https://doi.org/10.1007/s11665-010-9684-3
  13. M. Asadikiya and M. Ghorbani, Effect of Inhibitors on the Corrosion of Automotive Aluminum Alloy in Ethylene Glycol-Water Mixture, Corrosion, 67, 126001 (2011). Doi: https://doi.org/10.5006/1.3666860
  14. Y. Liu and Y. F. Cheng, Inhibiting effect of cerium ions on corrosion of 3003 aluminum alloy in ethylene glycol-water solutions, Journal of Applied Electrochemistry, 41, 383 (2011). Doi: https://doi.org/10.1007/s10800-010-0247-y
  15. Y. Liu and Y. F. Cheng, Characterization of passivity and pitting corrosion of 3003 aluminum alloy in ethylene glycol-water solutions, Journal of Applied Electrochemistry, 41, 151 (2011). Doi: https://doi.org/10.1007/s10800-010-0215-6
  16. J. Y. Sha, H. H. Ge, C. Wan, L. T. Wang, S. Y. Xie, X. J. Meng, and Y. Z. Zhao, Corrosion inhibition behaviour of sodium dodecyl benzene sulphonate for brass in an Al2O3 nanofluid and simulated cooling water, Corrosion Science, 148, 123 (2019). Doi: https://doi.org/10.1016/j.corsci.2018.12.006
  17. B. H. Shu and J. Xue, Effect of Different Corrosion Inhibitors on Corrosion of AM60B Magnesium Alloy in Simulated Vehicle Coolant, International Journal of Electrochemical Science, 17, 220621 (2022). Doi: https://doi.org/10.20964/2022.06.40