• Title/Summary/Keyword: intermediate boundary condition

Search Result 27, Processing Time 0.023 seconds

Three-Level Optimal Control of Nonlinear Systems Using Fast Walsh Transform (고속월쉬변환을 이용한 비선형 시스템의 3계층 최적제어)

  • Kim, Tai-Hoon;Shin, Seung-Kwon;Cho, Young-Ho;Lee, Han-Seok;Lee, Jae-Chun;Ahn, Doo-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.11
    • /
    • pp.505-513
    • /
    • 2001
  • This paper presents the new three-level optimal control scheme for the large scale nonlinear systems, which is based on fast walsh transform. It is well known that optimization for nonlinear systems leads to the resolution of a nonlinear two point boundary value problem which always requires a numerical iterative technique for their solution. However, Three-level costate coordination can avoid two point boundary condition in subsystem. But this method also has the defect that must solve high order differential equation in intermediate level. The proposed method makes use of fast walsh transform, therefore, is simple in computation because of solving algebra equation instead of differential equation.

  • PDF

3-dimensional simulation of field emitter array (Field emitter array의 3차원 시뮬레이션)

  • 정재훈;김영훈;이병호;이종덕
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.4
    • /
    • pp.100-105
    • /
    • 1997
  • 3-dimensional finite element mehtod (FEM) elecrical field analysis was performed to obtain electric fields on a field emission display (FED) tip in an array form. Because, unlike a single tip structure, there is no azimuthal symmetry for a tip aary, 3D analysis is necessary. To reduce memory requriement the simulatio was performed by applying the neumann boundary condition to the intermediate plane between tips to take the effect of the array on the electric field into account and corresponding current was calculated. To verify our algorithm, comparison between simulation resutls and experimental data from another paper was made and the difference was discussed.

  • PDF

3-dimensional Electric Field Analysis for Field Emission Devices (전계방출소자의 3차원 전계해석)

  • Kim, Yeong-Hoon;Jung, Jae-Hoon;Lee, Byoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.662-664
    • /
    • 1997
  • 3-dimensional finite element method(FEM) electrical field analysis was performed to obtain electric fields on a field emission device tip in an array form. The simulation was performed by applying the Neumann boundary condition to the intermediate plane between tips. To verify our algorithm, comparison between simulation results and experimental data from another paper was made and the difference was discussed. Finally, analysis on triode structure was performed.

  • PDF

Free Vibration Analysis of the Scroll Compressor Housing by Shell Theory (셸이론을 이용한 스크롤 압축기 하우징의 자유진동해석)

  • Kim, H.S.;Lee, Y.S.;Yang, M.S.;Choi, M.H.;Ryu, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.242-247
    • /
    • 2000
  • In this study, the Rayleigh's energy method and the Rayleigh-Ritz method on the basis of Flugge's shell theory was used to analyze the dynamic characteristics of the scroll compressor housing with clamped boundary condition. The frequencies and mode shapes from theoretical calculation were compared with those of commercial finite element code, ANSYS. In order to validate the theory, modal test was also performed by impact test and FFT analysis.

  • PDF

An implicit decoupling method for unsteady RANS computation (비정상 RAMS 계산을 위한 내재적 분리 방법)

  • Rhee, Gwang-Hoon;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.704-708
    • /
    • 2000
  • A new efficient numerical method for computing unsteady, incompressible flows, DRANS (Decoupled Reynolds-Averaged Navier-Stokes), is presented. To eliminate the restriction of CFL condition, a fully-implicit time advancement in which the Crank-Nicolson method is used fer both the diffusion and convection terms. is adopted. Based on decomposition method, the velocity-turbulent quantity decoupling is achieved. The additional decoupling of the intermediate velocity components in the convection term is made for the fully-implicit time advancement scheme. Since the iterative procedures for the momentum, ${\kappa}\;and\;{\varepsilon}$ equations are not required, the components decouplings bring fourth the reduction of computational cost. The second-order accuracy in time of the present numerical algorithm is ascertained by computing decaying vortices. The present decoupling method is applied to turbulent boundary layer with local forcing.

  • PDF

Numerical Study on Sheet Metal Forming Analysis Using the One-Step Forming (One-Step Forming을 이용한 박판성형 해석에 관한 연구)

  • Jeong, Dong-Won;Lee, Sang-Je;Kim, Gwang-Hui
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.11-17
    • /
    • 1999
  • The objective of this paper is to introduce very fast but still stable solution using finite element procedures, and it has been used in an iterative mode for product design applications. A lot of numerical techniques have been developed to deal with the material, geometric and boundary condition non-linearities occurred in the stamping process. One of them, the One-Step FEM is very efficient and useful tool for a design and trouble-shooting in various stamping processes. In this method, the mathod, the material is assumed to deform directly from the initial flat blank to the final configuration without any intermediate steps. The formulation is based on the deformation theory of plasticity and the upper bound theorem. As a result of the calculations, the initial blank shape is obtained, together with the material flow, strains and thickness distribution in the part.

  • PDF

Energy Absorption Characteristics of Z-shape Fabric under High Velocity Impact (Z형 직물의 고속 충격 에너지 흡수 특성)

  • Choi, Chunghyeon;Park, Yurim;Kim, YunHo;Noh, Jae-young;Kim, Chun-Gon
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.176-181
    • /
    • 2015
  • In this study, the Z-shape fabric design is proposed as the way to enhance the ballistic performance of fabrics which are used as the intermediate layer of stuffed Whipple shield configurations. The Z-shape fabric employs a different boundary condition from those of conventional configurations of fabrics which include 4 edge fixed. Impact analysis on Z-shape aramid yarns and fabrics using LS-DYNA software was performed and the results were compared with 2 edge fixed and 4 edge fixed fabrics to identify the high velocity impact energy absorption characteristics of the Z-shape fabric. It was revealed that the Z-shape showed different impact behavior and higher energy absorption performance than 2 and 4 edge fixed fabrics.

Computational analysis of sandwich shield with free boundary inserted fabric at hypervelocity impact (비구속 삽입된 직물 섬유를 이용한 샌드위치 쉴드의 초고속 충격 해석)

  • Moon, Jin-Bum;Park, Yu-Rim;Son, Gil-Sang;Kim, Chun-Gon
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.31-38
    • /
    • 2011
  • In this paper, a novel hybrid composite shield to protect space structures from hypervelocity impact of micrometeoroid and space debris is proposed. The finite element model of the proposed shield was constructed and finite element analysis was conducted to approximate the energy absorption rate. Before the final model analysis, analysis of each component including the aluminum plate, PMMA plate, and intermediate layer of fabric was performed, verifying the finite element model of each component. The material properties used in the analyses were predicted material property values for high strain rates. The analysis results showed that, other than the fabric, the energy absorption rate of each component was in agreement. Afterwards, the finite element model of the hybrid composite shield was constructed, where it was analyzed for the restrained and unrestrained fabric boundary condition cases. Through the finite element analysis, the fiber pullout mechanism was realized for the hybrid shield with free boundary inserted fabric, and it was observed that this mechanism led to energy absorption increase.

A Potential-Based Panel Method for the Analysis of A Two-Dimensional Super-Cavitating Hydrofoil (양력판(揚力板) 이론(理論)에 의(依)한 2차원(次元) 수중익(水中翼)의 초월(超越) 공동(空洞) 문제(問題) 해석(解析))

  • Y.G. Kim;C.S. Lee;J.T. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.159-173
    • /
    • 1991
  • This paper describes a potential-based panel method formulated for the analysis of a super-cavitating two-dimensional hydrofoil. The method employs normal dipoles and sources distributed on the foil and cavity surfaces to represent the potential flow around the cavitating hydrofoil. The kinematic boundary condition on the wetted portion of the foil surface is satisfied by requiring that the total potential vanish in the fictitious inner flow region of the foil, and the dynamic boundary condition on the cavity surface is satisfied by requiring thats the potential vary linearly, i.e., the tangential velocity be constant. Green's theorem then results in a potential-based integral equation rather than the usual velocity-based formulation of Hess & Smith type. With the singularities distributed on the exact hydrofoil surface, the pressure distributions are predicted with improved accuracy compared to those of the linearized lilting surface theory, especially near the leading edge. The theory then predicts the cavity shape and cavitation number for an assumed cavity length. To improve the accuracy, the sources and dipoles on the cavity surface are moved to the newly computed cavity surface, where the boundary conditions are satisfied again. This iteration process is repeated until the results are converged. Characteristics of iteration and discretization of the present numerical method are much faster and more stable than the existing nonlinear theories. The theory shows good correlations with the existing theories and experimental results for the super-cavitating flow. In the region of small angles of attack, the present prediction shows and excellent comparison with the Geurst's linear theory. For the long cavity, the method recovers the trends of the Wu's nonlinear theory. In the intermediate regions of the short super-cavitation, the method compares very well with the experimental results of Parkin and also those of Silberman.

  • PDF

Splitting method for the combined formulation of fluid-particle problem

  • Choi, Hyung-Gwon;Yoo, Jung-Yul;Jeoseph, D.D.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.709-714
    • /
    • 2000
  • A splitting method for the direct numerical simulation of solid-liquid mixtures is presented, where a symmetric pressure equation is newly proposed. Through numerical experiment, it is found that the newly proposed splitting method works well with a matrix-free formulation fer some bench mark problems avoiding an erroneous pressure field which appears when using the conventional pressure equation of a splitting method. When deriving a typical pressure equation of a splitting method, the motion of a solid particle has to be approximated by the 'intermediate velocity' instead of treating it as unknowns since it is necessary as a boundary condition. Therefore, the motion of a solid particle is treated in such an explicit way that a particle moves by the known form drag (pressure drag) that is calculated from the pressure equation in the previous step. From the numerical experiment, it was shown that this method gives an erroneous pressure field even for the very small time step size as a particle velocity increases. In this paper, coupling the unknowns of particle velocities in the pressure equation is proposed, where the resulting matrix is reduced to the symmetric one by applying the projector of the combined formulation. It has been tested over some bench mark problems and gives reasonable pressure fields.

  • PDF