• Title/Summary/Keyword: interleukin-10 gene

Search Result 305, Processing Time 0.031 seconds

Inhibitory Effects of Ginsenoside Rb1,Rg3, and Panax ginseng Head Butanol Fraction on Inflammatory Mediators from LPS-Stimulated RAW 264.7 Cells

  • Lee, Je-Hyuk;Jeong, Choon-Sik
    • Biomolecules & Therapeutics
    • /
    • v.16 no.3
    • /
    • pp.277-285
    • /
    • 2008
  • Panax ginseng C.A. Mayer (Araliaceae, P. ginseng) has been used for the enhancement of vascular and immune functions in Korea and Japan for a long time. Ginsenoside $Rb_1$ and $Rg_3$ isolated from P. ginseng head-part butanolic extract (PGHB) were investigated for anti-inflammatory activity. Ginsenosides and PGHB did not affect the cell viability within $0\;-\;100\;{\mu}g/ml$ concentration to RAW 264.7 murine macrophage cells. Ginsenosides and PGHB inhibited partly lipopolysaccharide (LPS)-induced nitrite production in a dose-dependent manner. The ginsenosides and PGHB showed partially chemical nitric oxide (NO) quenching (maximum 40%) in the cell-free system. Also, ginsenoside $Rb_1$ and $Rg_3$ inhibited markedly approximately 74 and 54% of inducible nitric oxide synthase (iNOS) mRNA transcription from LPS-induced RAW 264.7 cells. Taken together, the inhibitory effect of ginsenosides and PGHB on NO production did not occur as a result of cell viability, but was caused by both the chemical NO quenching and the regulation of iNOS. Additionally, the ginsenoside $Rb_1$ and PGHB inhibited prostaglandin $E_2$ ($PGE_2$) synthesis in a concentration-dependent manner, showed approximately 70-98% inhibition at $100\;{\mu}g/ml$ concentration. And the treatment with ginsenosides and PGHB attenuated partially LPS-upregulated cyclooxygenase-2 (COX-2) gene transcription. Ginsenoside $Rg_3$ suppressed LPS-stimulated interleukin-6 (IL-6) level to the basal in RAW 264.7 cells. From these results, ginsenoside $Rb_1,\;Rg_3$, and PGHB may be useful for the relief and retardation of immunological inflammatory responses and its action may occur through the reduction of inflammatory mediators, including NO, $PGE_2$, and IL-6 production.

Comparison of Anti-allergenic Activities of Various Polyphenols in Cell Assays

  • Yun, Sang-Sik;Kang, Mi-Young;Park, Jun-Cheol;Nam, Seok-Hyun
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.3
    • /
    • pp.139-146
    • /
    • 2010
  • The inhibitory effects of 25 polyphenols against in vitro allergic reactions were compared using biochemical and cell assays. Three polyphenols including curcumin, gallic acid, and quercetin suppressed the release of $\beta$-hexosaminidase from ionophore A23187-stimulated RBL-2H3 cells more effectively (>50% inhibition at $100{\mu}M$ concentration). They were found to have potencies in suppressing the release of histamine not only from ionophore A23187-, but also from immunoglobulin E (IgE)-stimulated RBL-2H3 cells. Moreover, such suppressive effects of the three polyphenols were also observed in A23187 plus PMA-costimulated rat peritoneal mast cells. The extent of inhibition were quantified as the respective polyphenol concentration that inhibit 50% ($IC_{50}$) of $\beta$-hexosaminidase or histamine release, showing an inhibition tendency with decreasing order of curcumin>gallic acid>quercetin. Down-regulation of $Ca^{2+}$ influx was suggested as the cause of the inhibition of $\beta$-hexosaminidase and histamine releases in these cells. The immune process inhibition was confirmed by the observed reduction in the gene expressions and release of pro-inflammatory cytokine tumor necrosis factor (TNF)-$\alpha$, interleukin (IL)-$1\beta$, and IL-4, due probably to antioxidant activity of the polyphenols. These findings illustrate that curcumin, gallic acid, and quercetin may be beneficial against allergic inflammatory diseases.

Anti-inflammatory Activity of Stevia rebaudiana in LPS-induced RAW 264.7 Cells

  • Jeong, Il-Yun;Lee, Hyo-Jung;Jin, Chang-Hyun;Park, Yong-Dae;Choi, Dae-Seong;Kang, Min-Ah
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.1
    • /
    • pp.14-18
    • /
    • 2010
  • Stevia rebaudiana (SR) is an herb used traditionally as a sweetener in Paraguay and Brazil, whose use is spreading to other countries, such as Japan, Korea and China. In addition to its low calorie sweet taste, SR appears to have other beneficial properties, such as hypotensive capabilities and inflammation reduction. To identify the bioactive natural constituents exerting anti-inflammatory activities, we examined the EtOAc fraction of SR. In the inflammatory mediator inhibitory assay from lipopolysaccharide (LPS)-activated macrophages, the EtOAc fraction significantly, and dose dependently, inhibited the enhanced production of nitric oxide (NO) and inducible nitric oxide synthase (iNOS) expression. We also found that treatment of cells with the EtOAc fraction significantly inhibited LPS-stimulated nuclear factor-${\kappa}B$ (NF-${\kappa}B$) reporter gene expression. Such inhibition of NF-${\kappa}B$ was closely associated with the inhibition of interleukin-6 (IL-6) and the monocyte chemoattractant protein-1 (MCP-1). Therefore, we suggest that SR has the potential for development as a functional food for the treatment of immune diseases, such as rheumatoid arthritis and lupus.

Pro-inflammatory Cytokines and Their Receptors: Expression and Regulation in the Uterine Endometrium during the Estrous Cycle in Pigs

  • Yoo, Inkyu;Kim, Minjeong;Han, Jisoo;Jang, Hwanhee;Choi, Sun-Ho;Ka, Hakhyun
    • Journal of Embryo Transfer
    • /
    • v.31 no.4
    • /
    • pp.323-333
    • /
    • 2016
  • Pro-inflammatory cytokines, interleukin-$1{\beta}$(IL1B), IL6, and tumor necrosis factor-alpha (TNF), are known to play important roles in regulating the endometrial function in the uterus during the estrous cycle and pregnancy in several species. However, the expression and function of these cytokines and their receptors in the uterine endometrium during the estrous cycle have not been studied in pigs. Thus, this study determined the expression and regulation of IL1B, IL6, TNF and their respective receptors, IL1R1, IL1RAP, IL6R, GP130, TNFRSF1A, and TNFRSF1B during the estrous cycle in pigs. To analyze levels of each gene expression in the uterine endometrium we obtained from endometrial tissues on Days 0, 3, 6, 9, 12, 15, and 18 of the estrous cycle. Real-time RT-PCR analysis showed that levels of IL1B, IL1RAP, IL6R, GP130, TNF, TNFRSF1A, and TNFRSF1B mRNAs were highest on Day 15 or 18 of the estrous cycle, which corresponds to the proestrus period. Levels of IL1R1 were highest on Day 0, while levels of IL6 were biphasic with high levels on Day 6 and Day 15. The abundance of IL1B, IL6, IL6R, and TNF mRNAs was decreased by progesterone, while levels of GP130 were increased by progesterone in endometrial tissue explants. These results showed that expression of pro-inflammatory cytokines and their receptors changed stage-specifically during the estrous cycle and regulated by progesterone in the uterine endometrium in pigs, suggesting that these pro-inflammatory cytokines may be involved in the regulation endometrial function during the estrous cycle in pigs.

Matrix Degradative Enzymes and Their Inhibitors during Annular Inflammation : Initial Step of Symptomatic Intervertebral Disc Degeneration

  • Kim, Joo Han;Park, Jin Hyun;Moon, Hong Joo;Kwon, Taek Hyun;Park, Youn Kwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.5
    • /
    • pp.237-243
    • /
    • 2014
  • Objective : Symptomatic disc degeneration develops from inflammatory reactions in the annulus fibrosus (AF). Although inflammatory mediators during annular inflammation have been studied, the roles of matrix metalloproteinases (MMPs) and their inhibitors have not been fully elucidated. In this study, we evaluated the production of MMPs and tissue inhibitors of metalloproteinase (TIMPs) during annular inflammation using an in vitro co-culture system. We also examined the effect of notochordal cells on annular inflammation. Methods : Human AF (hAF) pellet was co-cultured for 48 hours with phorbol myristate acetate-stimulated macrophage-like THP-1 cells. hAF pellet and conditioned media (CM) from co-cultured cells were assayed for MMPs, TIMPs, and insulin-like growth factor (IGF)-1 levels using real-time reverse-transcriptase polymerase chain reaction and enzyem-linked immunosorbent assay. To evaluate whether notochordal cells affected MMPs or TIMPs production on annular inflammation, hAF co-cultured with notochordal cells from adult New Zealand White rabbits, were assayed. Results : MMP-1, -3, -9; and TIMP-1 levels were significantly increased in CM of hAF co-cultured with macrophage-like cells compared with hAF alone, whereas TIMP-2 and IGF-1 levels were significantly decreased (p<0.05). After macrophage exposure, hAF produced significantly more MMP-1 and -3 and less TIMP-1 and -2. Interleukin-$1{\beta}$ stimulation enhanced MMP-1 and -3 levels, and significantly diminished TIMP-2 levels. Co-culturing with rabbit notochordal cells did not significantly influence MMPs and TIMPs production or COL1A2 gene expression. Conclusion : Our results indicate that macrophage-like cells evoke annular degeneration through the regulation of major degradative enzymes and their inhibitors, produced by hAF, suggesting that the selective regulation of these enzymes provides future targets for symptomatic disc degeneration therapy.

The effect of hyaluronic acid on anti-inflammatory action in mouse (마우스에서 히알우론산 나트륨이 항염효과에 미치는 영향에 관한 연구)

  • Kim, Sang-Kyun;Lee, Hyung-Seok;Byeon, Kwang-Seob;Lee, Young-Joo;Hong, Soon-Min;Choi, Mee-Ra;Park, Jun-Woo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.1
    • /
    • pp.16-22
    • /
    • 2010
  • Purpose: The purpose of this study was not only to evaluate the relative mRNA expression of interleukin-$1{\beta}$(IL-$1{\beta}$), cyclooxygenase2 (COX-2) and prostaglandin E2 (PGE2) by RT-PCR analysis but to observe pattern of edema by light microscopic and electron microscope after topical apply of hyaluronic acid in inflammation-guided mouse. Material and methods: Mice of this study were devided into 4 groups: Control group (no inflammation guided), Positive control (inflammation guided + vaselin apply), Protopic group (inflammation guided + protopic apply), Hyaluronic group (inflammation guided + hyaluronic acid apply). Results: Hyaluronic group showed less expressions of IL-$1{\beta}$, COX-2, PGE2 than those of positive control & protopic group. Hyaluronic group revealed a decreased inflammation than positive control & protopic group in Light Microscope. Hyaluronic group appeared decreased edema of ear compare to positive control & protopic group in Elecron Microscope. Conclusion: It was considered that hyaluronic acid has an antiinflammatory effect for intercepting the gene expression of cytokines related to inflammation.

HOXB5 Directly Regulates the Expression of IL-6 in MCF7 Breast Cancer Cells

  • Kim, Jie Min;Lee, Ji-Yeon;Kim, Myoung Hee
    • Biomedical Science Letters
    • /
    • v.23 no.3
    • /
    • pp.272-276
    • /
    • 2017
  • HOX genes are transcription factors that play important roles in body patterning and cell fate specification during normal development. In previous study, we found aberrant overexpression of HOXB5 in breast cancer tissues and cell lines, and demonstrated that HOXB5 is important in regulation of cell proliferation, tamoxifen resistance, and invasiveness through the epithelial-mesenchymal transition (EMT). Although the relationship between HOXB5 and phenotypic changes in MCF7 breast cancer cells has been studied, the molecular function of HOXB5 as a transcription factor remains unclear. IL-6 has been reported to be involved in not only inflammation but also cancer progression, which is characterized by the increase of growth speed and invasiveness of tumor cells. In this study, we selected Interleukin-6 (IL-6) as HOXB5 putative downstream target gene and discovered that HOXB5 transcriptionally up-regulated the expression of IL-6 in HOXB5 overexpressing MCF7 cells. The upstream region (~1.2 kb) of IL-6 promoter turned out to contain several putative HOX consensus binding sites. Chromatin immunoprecipitation assay confirmed that HOXB5 directly binds to the promoter region of IL-6 and positively regulated the expression of IL-6. These data all together, indicate that HOXB5 promotes IL-6 transcription by actively binding to the putative binding sites located in the upstream region of IL-6, which enable to increase its promoter activity in MCF7 breast cancer cells.

The effect of sildenafil on right ventricular remodeling in a rat model of monocrotaline-induced right ventricular failure

  • Bae, Hyun Kyung;Lee, Hyeryon;Kim, Kwan Chang;Hong, Young Mi
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.6
    • /
    • pp.262-270
    • /
    • 2016
  • Purpose: Pulmonary arterial hypertension (PAH) leads to right ventricular failure (RVF) as well as an increase in pulmonary vascular resistance. Our purpose was to study the effect of sildenafil on right ventricular remodeling in a rat model of monocrotaline (MCT)-induced RVF. Methods: The rats were distributed randomly into 3 groups. The control (C) group, the monocrotaline (M) group (MCT 60 mg/kg) and the sildenafil (S) group (MCT 60 mg/kg+ sildenafil 30 mg/kg/day for 28 days). Masson Trichrome staining was used for heart tissues. Western blot analysis and immunohistochemical staining were performed. Results: The mean right ventricular pressure (RVP) was significantly lower in the S group at weeks 1, 2, and 4. The number of intra-acinar arteries and the medial wall thickness of the pulmonary arterioles significantly lessened in the S group at week 4. The collagen content also decreased in heart tissues in the S group at week 4. Protein expression levels of B-cell lymphoma-2 (Bcl-2)-associated X, caspase-3, Bcl-2, interleukin (IL)-6, matrix metalloproteinase (MMP)-2, endothelial nitric oxide synthase (eNOS), endothelin (ET)-1 and ET receptor A (ERA) in lung tissues greatly decreased in the S group at week 4 according to immunohistochemical staining. According to Western blotting, protein expression levels of troponin I, brain natriuretic peptide, caspase-3, Bcl-2, tumor necrosis factor-${\alpha}$, IL-6, MMP-2, eNOS, ET-1, and ERA in heart tissues greatly diminished in the S group at week 4. Conclusion: Sildenafil alleviated right ventricular hypertrophy and mean RVP. These data suggest that sildenafil improves right ventricular function.

Anti-inflammatory Effects of Various Mushrooms in LPS-stimulated RAW264.7 Cells

  • Seo, Kyung Hye;Park, Jeong-Yong;Noh, Hyung-Jun;Lee, Ji Yeon;Lee, Eun Young;Han, Jae-Gu;Kim, Jin Hyo;Cheong, Mi Sun
    • Korean Journal of Plant Resources
    • /
    • v.31 no.5
    • /
    • pp.478-488
    • /
    • 2018
  • Mushrooms have been widely cultivated and consumed as foods and herbal medicines owing to their various biological properties. However, few studies have evaluated the anti-inflammatory effects of mushrooms. Here, we investigated the effects of mushroom extracts (MEs) on lipopolysaccharide (LPS)-induced inflammation in macrophages (RAW264.7 cells). First, we extracted MEs with either water or ethanol. Using LPS-treated RAW264.7 cells, we measured cell proliferation and NO production. Gene expression of tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), interleukin (IL)-6 (IL-6), and $IL-1{\beta}$ was assessed by RT-PCR, and protein abundance of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) and phosphorylation of p65 were determined by immunoblotting. MEs prepared using both water and ethanol inhibited LPS-induced inflammation in RAW264.7 cells. Nitric oxide (NO) levels induced by LPS were reduced by treatment with MEs. Isaria japonica Yasuda water extracts and Umbilicaria esculenta (Miyoshi) Minks ethanol extracts significantly decreased the mRNA expression of inflammation-related cytokine genes including $TNF-{\alpha}$, IL-6, and $IL-1{\beta}$. Similarly, the protein abundance of iNOS and COX-2 was also decreased. The phosphorylation of p65, a subunit of nuclear $factor-{\kappa}B$ was at least partly suppressed by MEs. This study suggests that mushrooms could be included in the diet to prevent and treat macrophage-related chronic immune diseases.

Apoptosis and remodeling in adriamycin-induced cardiomyopathy rat model

  • Hong, Young Mi;Lee, Hyeryon;Cho, Min-Sun;Kim, Kwan Chang
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.11
    • /
    • pp.365-372
    • /
    • 2017
  • Purpose: The mechanism for the pathogenesis of adriamycin (ADR)-induced cardiomyopathy is not yet known. Different hypotheses include the production of free radicals, an interaction between ADR and nuclear components, and a disruption in cardiac-specific gene expression. Apoptosis has also been proposed as being involved in cardiac dysfunction. The purpose of this study was to determine if apoptosis might play a role in ADR-induced cardiomyopathy. Methods: Male Sprague-Dawley rats were separated into 2 groups: the control group (C group) and the experimental group (ADR 5 mg/wk for 3 weeks through intraperitoneal injections; A group). Echocardiographic images were obtained at week 3. Changes in caspase-3, B-cell leukemia/lymphoma (Bcl)-2, Bcl-2-associated X (Bax), interleukin (IL)-6, tumor necrosis $factor-{\alpha}$, brain natriuretic peptide (BNP), troponin I, collagen 1, and collagen 3 protein expression from the left ventricle tissues of C and A group rats were determined by Western blot. Results: Ascites and heart failure as well as left ventricular hypertrophy were noted in the A group. Ejection fraction and shortening fraction were significantly lower in the A group by echocardiography. The expression of caspase-3, Bax, IL-6, BNP, collagen 1, and collagen 3 were significantly higher in the A group as compared with the C group. Protein expression of Bcl-2 decreased significantly in the A group compared with the C group. Conclusion: ADR induced an upregulation of caspase-3, Bax, IL-6, and collagen, as well as a depression in Bcl-2. Thus, apoptosis and fibrosis may play an important role in ADR-induced cardiomyopathy.