• 제목/요약/키워드: interior permanent magnet synchronous motors

검색결과 88건 처리시간 0.032초

Optimal Rotor Shape Design of Asymmetrical Multi-Layer IPM Motors to Improve Torque Performance Considering Irreversible Demagnetization

  • Mirazimi, M.S.;Kiyoumarsi, A.;Madani, Sayed M.
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1980-1990
    • /
    • 2017
  • A study on the multi-objective optimization of Interior Permanent-Magnet Synchronous Motors (IPMSMs) with 2, 3, 4 and 5 flux barriers per magnetic pole, based on Genetic Algorithm (GA) is presented by considering the aspect of irreversible demagnetization. Applying the 2004 Toyota Prius single-layer IPMSM as the reference machine, the asymmetrical two-, three-, four- and five-layer rotor models with the same amount of Permanent-Magnets (PMs) is presented to improve the torque characteristics, i.e., reducing the torque pulsation and increasing the average torque. A reduction of the torque pulsations is achieved by adopting different and asymmetrical flux barrier geometries in each magnetic pole of the rotor topology. The demagnetization performance in the PMs is considered as well as the motor performance; and analyzed by using finite element method (FEM) for verification of the optimal solutions.

Analytical Study Considering Both Core Loss Resistance and Magnetic Cross Saturation of Interior Permanent Magnet Synchronous Motors

  • Kim, Young-Kyoun
    • Journal of Magnetics
    • /
    • 제17권4호
    • /
    • pp.280-284
    • /
    • 2012
  • This paper presents a method for evaluating interior permanent magnet synchronous motor (IPMSM) performance over the entire operation region. Using a d-q axis equivalent circuit model consisting of motor parameters such as the permanent magnetic flux, copper resistance, core loss resistance, and d-q axis inductance, a conventional mathematical model of an IPMSM has been developed. It is well understood that in IPMSMs, magnetic operating conditions cause cross saturation and that the iron loss resistance - upon which core losses depend - changes according to the motor speed; for the sake of convenience, however, d-q axis machine models usually neglect the influence of magnetic cross saturation and assume that the iron loss resistance is constant. This paper proposes an analysis method based on considering a magnetic cross saturation and estimating a core loss resistance that changes with the operating conditions and speed. The proposed method is then verified by means of a comparison between the computed and the experimental results.

선형보간법을 이용한 매립형 영구자석 동기모터의 감자고장진단 (Demagnetization Fault Diagnosis in IPMSM Using Linear Interpolation)

  • 정혜윤;문석배;이호진;김상우
    • 전기학회논문지
    • /
    • 제66권3호
    • /
    • pp.568-574
    • /
    • 2017
  • This paper proposes a demagnetization fault diagnosis method for interior permanent magnet synchronous motors(IPMSMs). In particular, a demagnetization fault is one of the most frequent electrical faults in IPMSMs. This paper proposes an estimation method for permanent magnet flux. The method is based on linear interpolation. The effectiveness of the proposed method for diagnose demagnetization faults is verified through various operating conditions by finite element simulation.

A Study on Driving Simulation and Efficiency Maps with Nonlinear IPMSM Datasets

  • Kim, Won-Ho;Jang, Ik-Sang;Lee, Ki-Doek;Im, Jong-Bin;Jin, Chang-Sung;Koo, Dae-Hyun;Lee, Ju
    • Journal of Magnetics
    • /
    • 제16권1호
    • /
    • pp.71-73
    • /
    • 2011
  • Hybrid electric vehicles have attracted much attention of late, emphasizing the necessity of developing traction motors with a high input current and a wide speed range. Among such traction motors, various researches have been conducted on interior permanent-magnet synchronous motors (IPMSMs) with high power density and mechanical solidity. Due to the complexity of its parameters, however, with nonlinear motor characteristics and current vector control, it is actually difficult to accurately estimate the base speed within an actual operating speed range or a voltage limit. Moreover, it is impossible to construct an efficiency map as the efficiency differs according to the control mode. In this study, a simulation method for operation performance considering the nonlinearity of IPMSM was proposed. For this, datasets of various nonlinear parameters were made via the finite-element method and interpolation. Maximum torque-per-ampere and flux-weakening control were accurately simulated using the datasets, and an IPMSM efficiency map was accurately constructed based on the simulation. Lastly, the validity of the simulation was verified through tests.

토크예측제어를 이용한 매입형 영구자석 동기전동기의 토크리플저감기법 (Torque Ripple Reduction of Interior Permanent-Magnet Synchronous Motors Driven by Torque Predictive Control)

  • 김현섭;한정호;송중호
    • 조명전기설비학회논문지
    • /
    • 제27권2호
    • /
    • pp.102-109
    • /
    • 2013
  • In this paper, a new torque predictive control method of interior permanent magnet synchronous motor is developed based on an extended rotor flux. Also, a duty ratio prediction method is proposed and allows the duty ratio of the active stator voltage vector to be continuously calculated. The proposed method makes it possible to relatively reduce the torque ripple under the steady state as well as to remain the good dynamic response in the transient state. With the duty ratio prediction method, the magnitude and time interval of the active stator voltage vector applied can be continuously controlled against the varying operation conditions. This paper shows a comparative study among the switching table direct torque control(DTC), the SVM-DTC, conventional torque predictive control, and the proposed torque predictive control. Simulation results show validity and effectiveness of this work.

Off-Line Parameter Identification of Permanent Magnet Synchronous Motor Using a Goertzel Algorithm

  • Yoon, Jae-Seung;Lee, Kyoung-Gu;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2262-2270
    • /
    • 2015
  • Generally, internal parameters of the motors and generators can be divided to the resistance and inductance components. They can become a cause of the changing internal parameters because they have sensitive characteristics due to external conditions. The changed parameters can generate the outputs which include error values from the speed and current controllers. Also, it can bring the temperature increase and mechanical damage to the system. Therefore, internal parameters of the motors and generators need to obtain their values according to the external conditions because it can prevent the mechanical damage caused by the changed parameters. In this paper, the off-line parameter identification method is verified using the Goertzel algorithm. The motor used in the simulation and experiments is an interior permanent magnet synchronous motor (IPMSM), and the proposed algorithm is verified by the simulation and experimental results.

철도차량용 IPMSM의 Water-cooling Jacket 설계 연구 (A Study on the Water-cooling Jacket Design of IPMSM for Railway Vehicles)

  • 박찬배;이준호;이병송
    • 전기학회논문지
    • /
    • 제62권10호
    • /
    • pp.1475-1480
    • /
    • 2013
  • In this paper, the basic design study of a water-cooling jacket, which have reported no cases for applying to railway traction motors so far, were conducted for applying to Interior Permanent Magnet Synchronous Motor (IPMSM) for railway vehicles. The basic thermal characteristics analysis of the 110kW-class IPMSM was performed by using 3-dimentional thermal equivalent network method. The necessary design requirements of the water-cooling jacket were derived by analyzing the results of the basic thermal properties. Next, the thermal characteristics analysis technique was established by using the equivalent model of the solenoid-typed pipe to be installed on the inside of the water-cooling jacket for 110kW-class IPMSM. Finally, a design model of 6kW-class water-cooling jacket was derived through the analysis of various design parameters.

최대 출력 확보를 위한 매입형 영구자석 전동기의 전기자 권선설계 (Study on the Armature Winding Design of Interior Permanent Magnet Synchronous Motor for Maximum Power)

  • 임호경;이정종;이태근;홍정표
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.875_876
    • /
    • 2009
  • Recently, Interior Permanent Magnet Synchronous Motor(IPMSM) is widely used in the industry applications such as power train for hybrid vehicles and compressor motors of air-conditioner due to its high power density and wide speed range. There are some ways for confirming of maximum power in IPMSM. However, This paper suggests that there is a way about making sure maximum power by reducing turn numbers of armature winding. Setting up the voltage equation through the equivalent circuit and vector diagram of IPMSM first, and then estimating the parameter and power of IPMSM by changing the turn numbers of armature winding and voltage. In order to satisfy output power, the turn numbers of armature winding is changed by using the characteristic analysis, and then checking whether secure maximum power or not.

  • PDF

유전 알고리즘을 이용한 매입형 영구자석 동기전동기의 최적 설계 (Optimal Design of Interior Permanent Magnet Synchronous Motors Using Genetic Algorithm)

  • 조동혁;심동준;천장성;정현교
    • 한국자기학회지
    • /
    • 제6권4호
    • /
    • pp.258-263
    • /
    • 1996
  • 매입형 영구자석 전동기는 d, q축 인덕턴스의 차이로 인해 출력이 자석 토크와 릴럭턴스 토크의 합성토크로서 나타난다. 본 논문에서는 등가자기회로법으로 계산된 공극 자속밀도와 d, q축 인덕턴스를 유한요소법을 이용하여 식을 보정하였다. 전동기의 효율을 목적 함수로 채택하였으며 유전 알고리즘(genetic algorithm)을 이용하여 최대 효율을 갖는 전동기를 설계하였다. 그리고, 설계된 전동기의 타당성을 기존의 전동기와의 비교를 통해 확인하였다.

  • PDF

매입형 영구자석 동기전동기의 인덕턴스 산정방법 비교 (Comparison of Inductance Calculation Methods in Interior Permanent Magnet Synchronous Motor)

  • 손도;권순오;이석희;홍정표
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.762-763
    • /
    • 2008
  • The purpose of this paper is to investigate and compare the inductance evaluation methods of interior permanent magnet synchronous motors (IPMSM). Three major finite element methods are discussed. Their detail calculation processes will be presented as well as their fundamental principles. Not only the results, but also their solving method, computation time and complexity also will be compared. Finally, the calculated results will be verified with an experiment.

  • PDF