• Title/Summary/Keyword: interior noise reduction

Search Result 135, Processing Time 0.022 seconds

Analysis and Evaluation of Interior Noise for KTX Passenger car (KTX 객차의 실내소음 평가 및 분석)

  • Moon Kyeong-Ho;Kim Jae-Chul;Lee Chan-Woo
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.114-119
    • /
    • 2003
  • Passengers are much interested in ineroir noise caused speed-up and mass reduction of railway vehicles. Generally, the major noise source for passenger cars are rolling noise and aerodynamic noise. The purpose of this paper is to evaluate the noise level and to analyze the noise sources for domestic and KTX trains. We also measured the interior noise and the rolling noise for passenger cars. In result, the noise level is below 65dBA for Seamaeul coachs, and below 66dBA for KTX coachs.

  • PDF

PROCESS OF DESIGNING BODY STRUCTURES FOR THE REDUCTION OF REAR SEAT NOISE IN PASSENGER CAR

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.67-73
    • /
    • 2007
  • This study analyzes the interior noise that is generated during acceleration of a passenger car in terms of car body structure and panel contribution. According to the transfer method, interior noise is classified into structure-borne noise and air-borne noise. Structure-borne noise is generated when the engine's vibration energy, an excitation source, is transferred to the car body through the engine mount and the driving system and the panel of the car body vibrates. When structure-borne noise resonates in the acoustic cavity of the car interior, acute booming noise is generated. This study describes plans for improving the car body structure and the panel form through a cause analysis of frequency ranges where the sound pressure level of the rear seat relative to the front seat is high. To this end, an analysis of the correlation between body attachment stiffness and acoustic sensitivity as well as a panel sensitive component analysis were conducted through a structural sound field coupled analysis. Through this study, via research on improving the car body structure in terms of reducing rear seat noise, stable performance improvement and light weight design before the proto-car stage can be realized. Reduction of the development period and test car stage is also anticipated.

Shape Design of Construction Equipment Tailpipe for Noise Reduction and Engine Room Cooling (소음 및 엔진룸 냉각개선을 위한 건설기계테일파이프의 형상설계)

  • Kim, Seong-Jae;Yang, Ji-Hae;Kim, Nag-In;Kim, Jou-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.737-740
    • /
    • 2004
  • The interior noise reduction of construction equipment is concerned for improving the driver comfort in this study. From the baseline test, the exhaust noise gives a big contribution to the interior noise of construction equipment. And the detail noise contribution analysis of the exhaust system, the tail pipe, which is for ventilation an engine room hot air to outside, amplify the exhaust noise around operating engine RPM associated with tail pipe structural and cavity resonances. To remove the noise amplifying effects, the tail pipe has to be shorted its length. Even the noise can be attenuated the ventilation flux when using the redesigned tail pipe is reduced than the original one. Thus, a shape change of the tail pipe is additionally needed for increasing the ventilation flux and attenuating the exhaust noise using CFD technique. The CFD results of the tail pipe give a meaning full information what obstructs the ventilation flex in the current design and how changes the tail pipe.

  • PDF

Noise Contribution Analysis and Noise reduction of a Diesel Engine Fork-lift Truck (디젤 엔진 지게차의 소음원별 기여도 분석과 실내소음 저감)

  • Lee, J.K.;Cho, Y.H.;Kim, G.H.;Park, S.T.;Kim, N.I.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1473-1478
    • /
    • 2000
  • Severe fork-lift truck noise is annoying to an operator as well as one of the noise pollution elements. This paper presents the noise contribution analysis of a cabin type fork-lift truck to identify the major sources and its usage to reduce the interior noise level. The methodologies for this work are sound field analysis, sound intensity test, insertion loss test of duct system and etc. An effective method to suppress interior noise level of fork-lift truck and design guides are suggested.

  • PDF

Interior Noise Reduction Using Sensitivity Analysis and Structural Dynamic Modification (민감도 해석 및 구조 변경법을 이용한 차실 소음 저감)

  • 황우석
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1145-1151
    • /
    • 1999
  • Sensitivity analysis and structural modification technique are used to reduce the interior noise of a passenger car. The sensitivity analysis for the noise level at the rear seat shows that the stiffness change at the front lower member and the rear roof rail are sensitive. Using the structural modification method, we verified that the reinforcements at those members decrease the noise transfer function from the body to the rear seat. The combined application of the sensitivity analysis and structural modification method can decrease the noise level effectively.

  • PDF

The Identification of Generation Mechanism of Noise and Vibrtaion and Transmission Characteristics for Engine System - The Source Identification and Noise Reduction of Compartment by Multidimensional Spectral Analysis and Vector Synthesis Method - (엔진의 소음.진동발생기구 및 전달특성 규명 -다차원해석법과 벡터합성법에 의한 차실소음원 규명 및 소음저감 -)

  • O, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1127-1140
    • /
    • 1997
  • With the study for identifying the transmission characteristics of vibration and noise generated by operating engine system of a vehicle, recently many engineers have studied actively the reduction of vibration and noise inducing uncomfortableness to the passenger. In this study, output noise was analyzed by multi-dimensional spectral analysis and vector synthesis method. The multi-dimensional analysis method is very effective in case of identification of primary source, but this method has little effect on suggestion for interior noised reduction. For compensation of this, vector synthesis method was used to obtain effective method for interior noise reduction, after identifying primary source for output noise. In this paper, partial coherence function of each input was calculated to know which input was most coherent to output noise, then with simulation of changes for input magnitude and phase by vector synthesis diagram, the trends of synthesized output vector was obtained. As a result, the change of synthesized output vector could be estimated.

Sound Reduction Index of Interior Door by Aperture Sizes at Door's Bottom (하부틈새 크기에 따른 도어의 음향감쇠계수 분석)

  • Kim, Myung-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.9
    • /
    • pp.834-840
    • /
    • 2010
  • The Sound reduction indices(SRIs) of interior door with 13 different size apertures are measured in acoustic chamber. Also, as a theoretical approach, the SRIs are estimated using Gomperts' theory. In this study, the aperture of interior door is focused on the lower part of door leaf which is well known as a main cause to deteriorate the sound insulation performance of door. The results show that the SRI of door strongly depends on the aperture width and the dip in the measured sound reduction index curve by the resonance effect within aperture is observed at high-frequency. On the whole, the values calculated by theory are in good agreement with the measured values including the position of resonance dip. The average difference between the measured and the calculated values is 0.9 dB for 13 doors with different size aperture in terms of the weighted SRI.

A Study on Interior Noise Characteristics of High-speed Trains (고속철도 차량의 실내소음 특성 연구)

  • Noh, Hee-Min;Choi, Sunghoon;Kim, Seog-Won;Hong, Suk-Yoon
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.14-19
    • /
    • 2013
  • Because excessive interior noise when riding a high-speed train leads to annoyances, fatigue and stress for passengers, interior noise reduction methods should be considered. In particular, a high-speed train operated in various operation environments, and in South Korea, these include open fields and tunnels. Therefore, a specific study about changes in interior noise characteristics according to different environments is necessary. For this reason, the interior noise characteristics on a KTX train and on the KTX-Sancheon train were analyzed from noise measurements using microphones in this paper. Vibrations on the axles, bogies and floor were also measured, are these area are structural paths for interior noise. From this research, the interior noise characteristics according to the driving speed were deduced and the effects on interior noise by driving environments such as open fields and tunnels were investigated. Furthermore, the effect on interior noise by axles, bogies and floor vibrations were analyzed from a transfer function analysis.

Prediction vehicle interior noise using Acoustic Transfer Function (Acoustic Transfer Function을 이용한 실차 실내 소음 예측)

  • Koh, Sung-Gyoo;Shin, Han-Seung;Cho, Whan-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.534-537
    • /
    • 2011
  • This Paper present prediction Vehicle Interior Noise using ATF(Acoustic Transfer Function) and engine radiated sound power. This is useful tool to qualifying the effectiveness of Air-borne noise Path. Furthermore This method provide acoustic package performance of the vehicle and able to prepare frequency band to same segment or benchmarking vehicle.

  • PDF

Identification of the Interior Noise Generated by SUV Axle and Modification of the Structural on Axle System for Noise Reduction (SUV용 액슬의 소음원 규명 및 소음 저감을 위한 액슬의 구조변경에 관한 연구)

  • Lee, Ju-Young;Jo, Yoon-Kyeong;Kim, Jong-Youn;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.582-592
    • /
    • 2006
  • This paper presents experimental and analytic methods to reduce interior noise generated by car axle. The test vehicle has a whine noise problem at passenger seats. In order to identify transfer path of interior axle noise, the vibration path analysis, the modal analysis and running modal analysis are systematically employed. By using these various methods, it has been founded that the interior noise generated by car axle was air borne noise. To reduce and predict axle noise, various structural modifications are performed by using FEM and BEM techniques, respectively. Through the modification of the axle structure, the air borne noise of the axle was reduced 3$\sim$4 dBA level.