• Title/Summary/Keyword: interference measurement

Search Result 614, Processing Time 0.022 seconds

Development of Monitoring System for Inspection of Polarization Optical Fiber (편광 유지형 광섬유의 검사 모니터링 시스템 개발)

  • Kim, Jae-Yoel;Lim, Jong-Han
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.145-150
    • /
    • 2007
  • Optical communication according to request of technology of communications and optical fiber to be full filed faster communication and pass over transmission capacity limit per unit area, per unit hour appeared, and this optical fiber acts the biggest role to influence performance of optical communication network. Optical fiber(PMF Polarization Maintaining Fiber) is used, and is used by electric field measurement, self-discipline measurement, sensor(Sensor) Department by high definition measure such as thermometry and storehouse component that use because make broad sense status and polarized light information in passageway and union with storehouse integrated circuit etc. that use broad sense interference developing could transmit in state that keep transmitting broad sense plane of polarization is polarized light existence. Also, research is developed by optical fiber for Coherent communication recently.

Review of low-noise radio-frequency amplifiers based on superconducting quantum interference device

  • Lee, Y.H.;Chong, Y.;Semertzidis, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.1-6
    • /
    • 2014
  • Superconducting quantum interference device (SQUID) is a sensitive detector of magnetic flux signals. Up to now, the main application of SQUIDs has been measurements of magnetic flux signals in the frequency range from near DC to several MHz. Recently, cryogenic low-noise radio-frequency (RF) amplifiers based on DC SQUID are under development aiming to detect RF signals with sensitivity approaching quantum limit. In this paper, we review the recent progress of cryogenic low-noise RF amplifiers based on SQUID technology.

Environmental effects by corona discharge from a 765kV double circuit transmission line (765kV 2회선 송전선의 코로나 방전에 의한 환경영향 연구)

  • 김정부;이동일;신구용;양광호;안희성;구자윤
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.451-455
    • /
    • 1996
  • This paper specified the measurement results conducted by the Korea Electric Power Research Institute (KEPRI) 765kV double circuit transmission test line that measured the audible noise, hum noise, radio interference, electric field and aeolian measurement. This test line consists of 6-480mm$^{2}$ conductors per phase. The analysis of the test results shows that this 6-Rail conductor bundle satisfies the audible noise criterion under the stable rainy weather condition and the radio interference level under the fair weather. And the other items are also agreed with the design level criterion. (author). 9 refs., 7 figs., 2 tabs.

  • PDF

Environmental Impact on the KEPCO 765-kV Double Circuit Transmission Line (한전 765 kV 2회선 송전선로의 전기환경장애 특성)

  • Lee, D.I;Sin, K.Y;Kim, J.B
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.2
    • /
    • pp.117-126
    • /
    • 1999
  • The environmental impact of the KEPCO 765-kV transmission line was studied using a full scale test line in order to develop the design technology. Therefore this paper describes an environmental design summary of the audible noise, hum noise, wind noise, radio interference, TV interference and electric field measurement from the KEPRI 765-kV double circuit transmission test line with a bundle of $6-480mm^2$ conductors per phase. The analysis of the test results shows that 6-Rail and 6-Cardinal conductors bundle satisfy the audible noise criterion & TV interference under the stable rainy weather condition and the radio interference level under the fair weather. And the other items are also agreed with the design level criterion for KEPCO 765-kV transmission line.

  • PDF

Measurement of Carrier-to-Noise due to Sun Interference Effect on C-band for THAICOM 2 Down-link Station at Mung, Khon-kaen

  • A. Waisontia;K. Charouensuk;S.Noppanakeepong;Lee, N. laruji;N. Heammkorn;Y. Moriya
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.2043-2046
    • /
    • 2002
  • This paper studies on Sun interference effects or Sun outage effects on C-band satellite reception signal for THAICOM2. The THAICOM2 satellite is at 78.5 degree East 〔co-located with THAICOM3〕. The down link station was located in Khon-kaen, longitude 102.83 degree East and latitude 16.43 degree North. The antenna diameter is 4.6 meters for C-band downlink station. Total 9 times of sun interference events were occurred during summer and fall of 2001 and these about 53 minutes altogether. The Maximum CM degradation of the THAICOM2 system was around 11 dB. The Sun interference events of 53 minutes of one year are 0.0122 percents of the C-band contact time when 21 hours of contact time is used f3r broadcasting a day.

  • PDF

The Analysis of Radio Interference between Korea and China/japan using Split-step DMFT Algorithm (Sp1it-step DMFT 알고리즘을 이용한 한국과 중국/일본간 전자파 간섭특성 분석)

  • 정남호;손호경;김봉석;백정기;이형수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.2
    • /
    • pp.196-208
    • /
    • 2002
  • Since radio interference has occurred in the TRS frequency band in the south coastal area, Korea from 1994, similar interference has been observed in the mobile-cellular frequency band. Measurement showed that the sources of the radio interference are those from the base stations for digital cellular systems in Japan. This because the receiving frequency of the base stations in Korea is same as the transmitting frequency of the base stations in Japan. Since the distance between Korea and Japan is 240 ~ 300 km, we can conclude that the main reason of the interference is ducting. In this paper a ducting channel is modeled by split-step DMFT algorithm, and simulation results for measured index profile far east coast and west sea area are analyzed.

Interference Effects on the Thickness of a Pulse Pressure Sensor Array Coated with Silicone (맥 센서 어레이(array)의 실리콘(silicone) 코팅 두께에 따른 센서 간 간섭효과)

  • Jun, Min-Ho;Jeon, Young Ju;Kim, Young-Min
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.35-40
    • /
    • 2016
  • Pulse diagnosis is one of the representative diagnostic methods in Oriental medicine. In this study, a pulse pressure sensor array coated with silicone, which includes 6 piezo-resistive sensors and 1 thermistor, is fabricated for pulse measurement. It is necessary to coat the pulse sensor array with silicone to avoid the fracture or damage of pressure sensors when the sensor is in contact with the skin and a constant pressure is applied. However, the silicone coating on the pulse sensor array can cause signal interference among the sensors in the pulse sensor array. The interference number (IN), a calculation for expressing the degree of interference among channels, is changed according to the silicone thickness on the pulse sensor array. The IN is increased by a thick silicone coating, but the fabrication error, an important index for the mass production of the sensor array, is reduced by the thickness of the silicone coating. We propose that the thickness of the silicone on the pulse sensor array is an important consideration for the performance of the fabricated sensor and manufacturing repeatability.

Estimation of Phosphorus Concentration in Silicon Thin Film on Glass Using ToF-SIMS

  • Hossion, M. Abul;Murukesan, Karthick;Arora, Brij M.
    • Mass Spectrometry Letters
    • /
    • v.12 no.2
    • /
    • pp.47-52
    • /
    • 2021
  • Evaluating the impurity concentrations in semiconductor thin films using time of flight secondary ion mass spectrometry (ToF-SIMS) is an effective technique. The mass interference between isotopes and matrix element in data interpretation makes the process complex. In this study, we have investigated the doping concentration of phosphorus in, phosphorus doped silicon thin film on glass using ToF-SIMS in the dynamic mode of operation. To overcome the mass interference between phosphorus and silicon isotopes, the quantitative analysis of counts to concentration conversion was done following two routes, standard relative sensitivity factor (RSF) and SIMetric software estimation. Phosphorus doped silicon thin film of 180 nm was grown on glass substrate using hot wire chemical vapor deposition technique for possible applications in optoelectronic devices. Using ToF-SIMS, the phosphorus-31 isotopes were detected in the range of 101~104 counts. The silicon isotopes matrix element was measured from p-type silicon wafer from a separate measurement to avoid mass interference. For the both procedures, the phosphorus concentration versus depth profiles were plotted which agree with a percent difference of about 3% at 100 nm depth. The concentration of phosphorus in silicon was determined in the range of 1019~1021 atoms/cm3. The technique will be useful for estimating distributions of various dopants in the silicon thin film grown on glass using ToF-SIMS overcoming the mass interference between isotopes.