• 제목/요약/키워드: interfacial fracture

검색결과 313건 처리시간 0.028초

$Ar^+$ RF 플라즈마 처리조건이 임베디드 PCB내 전극 Cu박막과 ALD $Al_2O_3$ 박막 사이의 계면파괴에너지에 미치는 영향 (Effect of $Ar^+$ RF Plasma Treatment Conditions on Interfacial Adhesion Energy Between Cu and ALD $Al_2O_3$ Thin Films for Embedded PCB Applications)

  • 박성철;이장희;이정원;이인형;이승은;송병익;정율교;박영배
    • 마이크로전자및패키징학회지
    • /
    • 제14권1호
    • /
    • pp.61-68
    • /
    • 2007
  • 임베디드 PCB 기판내 유전체 재료인 Atomic Layer Deposition(ALD) $Al_2O_3$ 박막과 전극재료인 스퍼터 증착된 Cu박막 사이의 계면접착력을 $90^{\circ}$ 필 테스트방법으로 측정하여 순수 빔 굽힘을 가정한 에너지 평형 해석을 통하여 계면파괴에너지를 구하였다. $Cu/Al_2O_3$의 계면파괴에너지(${\Gamma}$)는 매우 약하여 측정할 수 없었으나, 접착력 향상층 Cr 박막을 삽입하여 $Cr/Al_2O_3$의 계면파괴에너지는 $10.8{\pm}5.5g/mm$를 얻었다. $Al_2O_3$ 표면에 $0.123W/cm^2$ 의 power density로 2분간 $Ar^+$ RF 플라즈마 전처리를 하고 Cr박막을 삽입한 $Cr/Al_2O_3$ 계면파괴에너지는 $39.8{\pm}3.2g/mm$으로 매우 크게 증가하였는데, 이는 $Ar^+$ RF 플라즈마 전처리에 따른 mechanical interlocking효과와 Cr-O 화학결합 효과가 동시에 기여한 것으로 생각된다.

  • PDF

탄소섬유/에폭시 복합재료의 층간파괴인성에 미치는 균열진전각도의 영향 (Effect of Crack Propagation Directions on the Interlaminar Fracture Toughness of Carbon/Epoxy Composite Materials)

  • 황진호;황운봉
    • 대한기계학회논문집A
    • /
    • 제23권6호
    • /
    • pp.1026-1038
    • /
    • 1999
  • Interlaminar fracture toughness of carbon/epoxy composite materials has been studied under tensile and flexural loading by the use of width tapered double cantilever beam(WTDCB) and end notched flexure(ENF) specimens. This study has significantly examined the effect of various interfacial ply orientation, ${\alpha}(0^{\circ},\;45^{\circ}\;and\;90^{\circ})$ and crack propagation direction, ${\theta}(0^{\circ},\;15^{\circ},\;30^{\circ}\;and\;45^{\circ})$ in terms of critical strain energy release rate through experiments. Twelve differently layered laminates were investigated. The data reduction for evaluating the fracture energy is based on compliance method and beam theory. Beam theory is used to analyze the effect of crack propagation direction. The geometry and lay-up sequence of specimens are considered various conditions such as skewness parameter, beam volume, and so on. The results show that the fiber bridging occurred due to the non-midplane crack propagation and causes the difference of fracture energy evaluated by both methods. For safer and more reliable composite structures, we obtain the optimal stacking sequence from initial fracture energy in each mode.

섬유강화 적층복합재의 열림모드 파괴특성 향상을 위해 $Ar^+$ 이온도움반응법을 적용한 프리프레그의 표면처리 연구 (A Study on the Surface Treatment of Prepreg with $Ar^+$ Ion to Increase Mode I Fracture Characteristics of Fiber-Reinforced Composites)

  • 이경엽;지창헌;양준호
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2771-2776
    • /
    • 2000
  • In this work, the effect of surface treatment of prepreg on the mode I fracture behavior was studied. Unidirectional (0-deg) double cantilever beam (DCB) specimens were used for fracture tests. Two groups of DCB specimens were made: the first group was made of prepregs surface-treated by Ar(sup)+ ion beam under oxygen environment and the second group was made of regular prepregs. For both groups, fracture resistance curve (R-curve) was determined and compared to each other, Results showed that resistance behavior of the first group is better than that of the second group. That is, mode I fracture toughness, G(sub)Ic of the first group is 24% larger than that of the second group. SEM examination shows that the improvement of G(sub)Ic is due to the increase of interfacial strength between plies.

용탕단조법으로 제조된 $Al_2O_3/AC4C$ 복합재료의 피로균열 전파거동에 관한 연구 (A Study on the Fatigue Crack Propagation Behavior of $Al_2O_3/AC4C$ Composites Made by Squeeze Casting Process)

  • 여인동;이지환
    • 한국주조공학회지
    • /
    • 제15권4호
    • /
    • pp.388-396
    • /
    • 1995
  • This study has been conducted with the purpose of examining the fatigue crack growth characteristics of $Al_2O_3$ short fiber reinforced aluminum matrix composites made by squeeze casting process with different applied pressure and binder amount. Fatigue crack growth experiments have been performed under constant load amplitude method with a fixed load ratio. The rate of crack propagation was decreased with binder amount as well as applied pressure. Also fatigue crack growth path in matrix was changed from flat to rough mode with an increase of applied pressure. In the composites, fatigue crack was propagated to interface between matrix and reinforcement at 10MPa, but it was propagated to reinforcement at 20MPa. The major reason of thee result was considered that interfacial bonding force and microstructure of matrix were improved due to an increase of applied pressure. Localized ductile striation in the composites was observed at low growth rate region and such a phenominon was remarkable with an increase of applied pressure. At high growth rate region, the propensity of fracture appearance was changed from interfacial debonding to reinforcement fracture with an increase of applied pressure.

  • PDF

Improvement of Adhesion Strength between Cu-based Leadframe and Fpoxy Molding Compound

  • Lee, Ho-Yoing
    • Transactions on Electrical and Electronic Materials
    • /
    • 제1권3호
    • /
    • pp.23-28
    • /
    • 2000
  • A block-oxide layer was formed on the surface of Cu-based leadframe by chamical oxidation method in order to enhance the adhesion strength between Cu-based leadframe and epoxy molding compound (EMC) Using sandwiched double cantilever beam (SDCB) specimens, the adesion strength was measured in terms of interfacial fracture toughness, G$\sub$IC//Results showed that the black-oxide layer was composed of two kinds of layers: pebble-like Cu$_2$O layer and acicular CuO layer, At the initial stage of oxidation the Cu$_2$O layer was preferentially formed and thickened up to around 200 nm whithin 1 minute of the oxidation time. Then the CuO layer started to from atop of the Cu$_2$O layer and thickened up to around 1300 nm until 20 minutes. As soon as the CuO layer formed, the thickness of Cu$_2$O layer began to reduce and finally reached to around 150 nm. The pre-cleaned and the Cu$_2$O coated leadframes showed almost no adhesion of EMC, however, as the CuO precipitates appeared and became continuous, G$\sub$IC/ increased up to around 80 J/㎡. Further oxidation raised G$\sub$IC/ up. to around 100 J/㎡.

  • PDF

접합 공정 조건이 Al-Al 접합의 계면접착에너지에 미치는 영향 (Effect of Bonding Process Conditions on the Interfacial Adhesion Energy of Al-Al Direct Bonds)

  • 김재원;정명혁;장은정;박성철;;;;김성동;박영배
    • 한국재료학회지
    • /
    • 제20권6호
    • /
    • pp.319-325
    • /
    • 2010
  • 3-D IC integration enables the smallest form factor and highest performance due to the shortest and most plentiful interconnects between chips. Direct metal bonding has several advantages over the solder-based bonding, including lower electrical resistivity, better electromigration resistance and more reduced interconnect RC delay, while high process temperature is one of the major bottlenecks of metal direct bonding because it can negatively influence device reliability and manufacturing yield. We performed quantitative analyses of the interfacial properties of Al-Al bonds with varying process parameters, bonding temperature, bonding time, and bonding environment. A 4-point bending method was used to measure the interfacial adhesion energy. The quantitative interfacial adhesion energy measured by a 4-point bending test shows 1.33, 2.25, and $6.44\;J/m^2$ for 400, 450, and $500^{\circ}C$, respectively, in a $N_2$ atmosphere. Increasing the bonding time from 1 to 4 hrs enhanced the interfacial fracture toughness while the effects of forming gas were negligible, which were correlated to the bonding interface analysis results. XPS depth analysis results on the delaminated interfaces showed that the relative area fraction of aluminum oxide to the pure aluminum phase near the bonding surfaces match well the variations of interfacial adhesion energies with bonding process conditions.

나노 SiC 입자의 형상에 따른 탄소섬유 강화 에폭시 복합재료의 기계적 및 계면 물성 변화 관찰 (Improvement of Mechanical and Interfacial Properties of Carbon Fiber/Epoxy Composites by Adding Nano SiC Fillers)

  • 권동준;왕작가;김제준;장기욱;박종만
    • 접착 및 계면
    • /
    • 제14권2호
    • /
    • pp.75-81
    • /
    • 2013
  • SiC 나노입자를 이용하여 에폭시 복합재료를 제조할 수 있다. SiC 형상에 따른 영향으로 복합재료의 계면 물성이 변화된다. SiC의 형상에 따른 계면 상태의 변화를 관찰하기 위해 베타 형태, 위스커 형태의 SiC 나노입자를 사용하였다. 나노입자에 대한 분산도를 평가하기 위해 커패시턴스를 이용한 분산도 평가방법을 활용하였다. FE-SEM을 이용하여 SiC 나노입자의 활용에 따른 나노복합재료의 파단면을 관찰하여, 그 강화 효과를 비교 분석하였다. 탄소섬유와 SiC 나노입자가 함유된 에폭시를 이용한 복합재료에 계면 물성을 비교하기 위해 층간전단강도 평가법과 계면전단강도 평가법을 이용하였다. 복합재료의 계면 물성을 강화하기 위해서는 베타 형태의 SiC 나노입자를 활용할 경우가 위스커 입자를 이용한 경우보다 높은 계면 강도를 나타냈다.

이관능성 에폭시/폴리메틸메타크릴레이트 블랜드의 열적 및 기계적 계면 특성 (A Study on Thermal and Mechanical Interfacial Properties of Difunctional Epoxy/PMMA Blends)

  • 박수진;김기석;이재락;민병각;김영근
    • Composites Research
    • /
    • 제17권1호
    • /
    • pp.10-17
    • /
    • 2004
  • 본 연구에서는 이관능성 에폭시(DGEBA)와 polymethylmethacrylate(PMMA)를 블랜딩하여 열적 특성과 기계적 계면특성을 측정하였다. 열적 특성은 DSC, DMA, 그리고 TGA를 이용하였으며, 블랜드의 기계적 계면특성을 측정하기 위해 contact angle로 표면자유에너지를 조사하였고, 파괴인성은 $K_{IC}$로 측정하고 $K_{IC}$ 실험 후 파괴단면을 SEM을 이용하여 관찰하였다. 실험 결과, 경화 온도와 유리전이 온도는 PMMA의 첨가에 의해 증가하는 것을 확인할 수 있었다. 또한 블랜드의 표면자유에너지는 PMMA의 저함량에서 높은 값을 나타내었고, 이는 비극성 요소의 증가와 극성 요소의 존재에 의한 것으로 판단된다. 블랜드의 파괴인성 측정 결과 5 phr에서 최대값을 나타내었다. 이는 DGEBA/PMMA 간의 상용성 또는 거대분자 사슬에서 물리적 결합의 증가에 기인하는 것으로 판단된다.

Static and Dynamic Fracture Analysis for the Interface Crack of Isotropic-Orthotropic Bimaterial

  • Lee, Kwang-Ho;Arun Shukla;Venkitanarayanan Parameswaran;Vijaya Chalivendra;Hawong, Jae-Sug
    • Journal of Mechanical Science and Technology
    • /
    • 제16권2호
    • /
    • pp.165-174
    • /
    • 2002
  • In the present study, interfacial cracks between an isotropic and orthotropic material, subjected to static far field tensile loading are analyzed using the technique of photoelasticity. The fracture parameters are extracted from the full-field isochromatic data and the same are compared with that obtained using boundary collocation method. Dynamic photoelasticity combined with high-speed digital photography is employed for capturing the isochromatics in the case of propagating interfacial cracks. The normalized stress intensity factors for static cracks are greate. when ${\alpha}$: 90$^{\circ}$(fibers perpendicular to the interface) than when ${\alpha}$=0$^{\circ}$(fibers parallel to the interface), and those when ${\alpha}$=90$^{\circ}$are similar to ones of isotropic material. The dynamic stress intensity factors for interfacial propagating cracks are greater when ${\alpha}$=0$^{\circ}$ than ${\alpha}$=90$^{\circ}$. For the velocity ranges (0.1 < C/C$\sub$s1/<0.7) observed in this study, the complex dynamic stress intensity factor │K$\sub$D/│increases with crack speed c, however, the rate of increase of │K$\sub$D/│with crack speed is not as drastic as that reported for homogeneous materials.

용탕단조한 미세강선 보강 알루미늄 복합재료의 미세조직에 대한 고찰 (Microstructure of Squeeze-cast Aluminum Matrix Composite Reinforced by Fine Steel Wires)

  • 정봉용;이인우;박흥일;김준수;김명호
    • 한국주조공학회지
    • /
    • 제14권5호
    • /
    • pp.455-463
    • /
    • 1994
  • Aluminum matrix composites reinforced by fine steel wires were fabricated by squeeze casting process. Preforms made of fine steel wires were prepared with different surface conditions, namely uncoated(TN), carbo-nitriding treated(TT), and brass coated(TA). Squeeze casting were performed under the pressure of $1500kg/cm^2$ for 3min. during solidification, and pouring temp. of the melt being $750^{\circ}C$ and the steel mold being preheated at $250^{\circ}C$. Microstructural characteristics were evaluated, particularly concerned with the effect of the surface conditions of the preforms. The results obtained from this study are like these. TN specimens show partially non-wetted regions, due to easy formation of oxides on the surface of the fine steel wires. TT specimens show no interfacial reaction between the steel wires and the aluminum alloy matrix, possibly due to the formation of carbo-nitrided zone on the surface of the steel wires. TA specimens show excellent wettabillity between the reinforced steel wires and the aluminum alloy matrix and very thin interfacial zone is formed between them. During the solution hardening treatment of TA specimens, thickness of the interfacial reaction zones were increased with the solution treating time. TA specimens show typical ductile fracture in tensile test, but TT specimens show brittle fracture possibly due to the formation of the brittle hard surface on the steel wires during carbo-nitriding treatments. TA specimens which were reinforced with 40 vol.% of the fine steel wires exhibit high tensile strength of $77.1kgf/mm^2$ and impact value of $8.1kgf-m/cm^2$.

  • PDF