• Title/Summary/Keyword: interfacial energy

Search Result 625, Processing Time 0.028 seconds

Nucleation and Growth of Bi-free and Superconducting Phases in Bi2Sr2Ca2.2CuO3Ox (Bi2Sr2Ca2.2CuO3Ox계에서 초전도상과 Bi-free상의 핵생성과 성장)

  • 오용택;신동찬;구재본;이인환;한상철;성태현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.343-350
    • /
    • 2003
  • Using Bi$_2$Sr$_2$Ca$_2$.$_2$Cu$_3$ $O_{x}$ powders prepared by solid state reaction and spray drying method, the nucleation and growth behaviors of superconducting and second phases were investigated during isothermal heat treatment. When the spray drying power was used in contrast with solid state reaction powder, Bi$_2$Sr$_2$Ca$_2$.$_2$Cu$_3$ $O_{x}$ (2223) phase could be formed at the relatively shot time and second phases were much bigger. Quantitative analysis showed that as the heat treatment time increased, more Bi$_2$Sr$_2$Ca$_2$.$_2$Cu$_3$ $O_{x}$ (2212) changed to 2223 and the major second phase was changed from (Sr,Ca)$_{14}$Cu$_{24}$ $O_{x}$(14:24) to (Sr,Ca)$_2$Cu$_1$ $O_{x}$ (2:l). The superconducting phase formed at the relatively short time 14:24 phase. Following the Bi-free phase of 14:24 Phase, but long time was needed in places far from the 14:24 phase. Following the formation of the 2212 phase near the 14:24 phase, the 2223 phase nucleated preferentially at the interface between the 2212 and 14:24 phases. The preferential nuclcation of 2223 was explained by its structural similarity and low Interfacial energy with both the Bi-free and 2212 Phases.12 Phases.

Thermal Properties and Fracture Toughness of Bisphenol-Based DGEBA/DGEBS Epoxy Blend System (Bisphenol계 DGEBA/DGEBS 에폭시 블렌드 시스템의 열적 특성 및 파괴인성)

  • 박수진;김범용;이재락;신재섭
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.33-39
    • /
    • 2003
  • In this study, the bisphenol-based DGEBA/GEBS blend systems were studied in cure kinetics, thermal stabilities, and fracture toughness of the casting specimen. The content of DGEBA/DCEBS was varied in 100 : 0, 90 : 10, 80 : 20, 70 : 30, and 60 : 40 wt%. The cure activation energies ($E_a$) of the blend systems were determined by Ozawa's equation. The thermal stabilities, including initial decomposed temperature (IDT), temperatures of maximum rate of degradation ($T_{max}$), and integral procedural decomposition temperature (IPDT) of the cured specimen were investigated by thermogravimetric analysis (TGA). For the mechanical interfacial properties of the specimens, the critical stress intensity factor ($K_{IC}$) test was performed and their fractured surfaces were examined by using a scanning electron microscope (SEM). As a result, $E_a$, IPDT, and $K_{IC}$ show maximum values in the 20 wt% DGEBS content compared with the neat DGEBA resins. This was probably due to the fact that the elevated networks were farmed by the introduction of sulfonyl groups of the DCEBS resin.

Tungsten oxide interlayer for hole injection in inverted organic light-emitting devices

  • Kim, Yun-Hak;Park, Sun-Mi;Gwon, Sun-Nam;Kim, Jeong-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.380-380
    • /
    • 2010
  • Currently, organic light-emitting diodes (OLEDs) have been proven of their readiness for commercialization in terms of lifetime and efficiency. In accordance with emerging new technologies, enhancement of light efficiency and extension of application fields are required. Particularly inverted structures, in which electron injection occurs at bottom and hole injection on top, show crucial advantages due to their easy integration with Si-based driving circuits for active matrix OLED as well as large open area for brighter illumination. In order to get better performance and process reliability, usually a proper buffer layer for carrier injection is needed. In inverted top emission OLED, the buffer layer should protect underlying organic materials against destructive particles during the electrode deposition, in addition to increasing their efficiency by reducing carrier injection barrier. For hole injection layers, there are several requirements for the buffer layer, such as high transparency, high work function, and reasonable electrical conductivity. As a buffer material, a few kinds of transition metal oxides for inverted OLED applications have been successfully utilized aiming at efficient hole injection properties. Among them, we chose 2 nm of $WO_3$ between NPB [N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] and Au (or Al) films. The interfacial energy-level alignment and chemical reaction as a function of film coverage have been measured by using in-situ ultraviolet and X-ray photoelectron spectroscopy. It turned out that the $WO_3$ interlayer substantially reduces the hole injection barrier irrespective of the kind of electrode metals. It also avoids direct chemical interaction between NPB and metal atoms. This observation clearly validates the use of $WO_3$ interlayer as hole injection for inverted OLED applications.

  • PDF

Recent developments and challenges in welding of magnesium to titanium alloys

  • Auwal, S.T.;Ramesh, S.;Tan, Caiwang;Zhang, Zequn;Zhao, Xiaoye;Manladan, S.M.
    • Advances in materials Research
    • /
    • v.8 no.1
    • /
    • pp.47-73
    • /
    • 2019
  • Joining of Mg/Ti hybrid structures by welding for automotive and aerospace applications has attracted great attention in recent years due mainly to its potential benefit of energy saving and emission reduction. However, joining them has been hampered with many difficulties due to their physical and metallurgical incompatibilities. Different joining processes have been employed to join Mg/Ti, and in most cases in order to get a metallurgical bonding between them was the use of an intermediate element at the interface or mutual diffusion of alloying elements from the base materials. The formation of a reaction product (in the form of solid solution or intermetallic compound) along the interface between the Mg and Ti is responsible for formation of a metallurgical bond. However, the interfacial bonding achieved and the joints performance depend significantly on the newly formed reaction product(s). Thus, a thorough understanding of the interaction between the selected intermediate elements with the base metals along with the influence of the associated welding parameters are essential. This review is timely as it presents on the current paradigm and progress in welding and joining of Mg/Ti alloys. The factors governing the welding of several important techniques are deliberated along with their joining mechanisms. Some opportunities to improve the welding of Mg/Ti for different welding techniques are also identified.

Effect of intracanal medications on the interfacial properties of reparative cements

  • Pereira, Andrea Cardoso;Pallone, Mariana Valerio;Marciano, Marina Angelica;Cortellazzi, Karine Laura;Frozoni, Marcos;Gomes, Brenda P.F.A.;de Almeida, Jose Flavio Affonso;de Jesus Soares, Adriana
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.2
    • /
    • pp.21.1-21.8
    • /
    • 2019
  • Objectives: The purpose of the present study was to evaluate the effect of calcium hydroxide with 2% chlorhexidine gel (HCX) or distilled water (HCA) compared to triple antibiotic paste (TAP) on push-out bond strength and the cement/dentin interface in canals sealed with White MTA Angelus (WMTA) or Biodentine (BD). Materials and Methods: A total of 70 extracted human lower premolars were endodontically prepared and randomly divided into 4 groups according to the intracanal medication, as follows: group 1, HCX; group 2, TAP; group 3, HCA; and group 4, control (without intracanal medication). After 7 days, the medications were removed and the cervical third of the specimens was sectioned into five 1-mm sections. The sections were then sealed with WMTA or BD as a reparative material. After 7 days in 100% humidity, a push-out bond strength test was performed. Elemental analysis was performed at the interface, using energy-dispersive spectroscopy. The data were statistically analyzed using analysis of variance and the Tukey test (p < 0.05). Results: BD presented a higher bond strength than WMTA (p < 0.05). BD or WMTA in canals treated with calcium hydroxide intracanal medications had the highest bond strength values, with a statistically significant difference compared to TAP in the WMTA group (p < 0.05). There were small amounts of phosphorus in samples exposed to triple antibiotic paste, regardless of the coronal sealing. Conclusions: The use of intracanal medications did not affect the bond strength of WMTA and BD, except when TAP was used with WMTA.

Photovoltaic Properties of Perovskite Solar Cells According to TiO2 Particle Size

  • Kim, Kwangbae;Lee, Hyeryeong;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.282-287
    • /
    • 2019
  • The photovoltaic properties of $TiO_2$ used for the electron transport layer in perovskite solar cells(PSCs) are compared according to the particle size. The PSCs are fabricated and prepared by employing 20 nm and 30 nm $TiO_2$ as well as a 1:1 mixture of these particles. To analyze the microstructure and pores of each $TiO_2$ layer, a field emission scanning electron microscope and the Brunauer-Emmett-Teller(BET) method are used. The absorbance and photovoltaic characteristic of the PSC device are examined over time using ultraviolet-visible-near-infrared spectroscopy and a solar simulator. The microstructural analysis shows that the $TiO_2$ shape and layer thicknesses are all similar, and the BET analysis results demonstrate that the size of $TiO_2$ and in surface pore size is very small. The results of the photovoltaic characterization show that the mean absorbance is similar, in a range of about 400-800 nm. However, the device employing 30 nm $TiO_2$ demonstrates the highest energy conversion efficiency(ECE) of 15.07 %. Furthermore, it is determined that all the ECEs decrease over time for the devices employing the respective types of $TiO_2$. Such differences in ECE based on particle size are due to differences in fill factor, which changes because of changes in interfacial resistance during electron movement owing to differences in the $TiO_2$ particle size, which is explained by a one-dimensional model of the electron path through various $TiO_2$ particles.

Development of Humidity Sensor Based on Ceramic/Metal Halide Composite Films for Non-Contact Biological Signal Monitoring Applications (비접촉 생체신호 모니터링 응용을 위한 세라믹/메탈 할라이드 복합막 기반 습도센서 개발)

  • Park, Tae-Ung;Kim, Ik-Soo;Kim, Min-Ji;Park, Chulhwan;Seo, Eui-kyoung;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.412-417
    • /
    • 2022
  • Capacitive-type humidity sensors with a high sensitivity and fast response/recovery times have attracted a great attention in non-contact respiration biological signal monitoring applications. However, complicated fabrication processes involving high-temperature heat treatment for the hygroscopic film is essential in the conventional ceramic-based humidity sensors. In this study, a non-toxic ceramic/metal halide (BaTiO3(BT)/NaCl) humidity sensor was prepared at room temperature using a solvent-free aerosol deposition process (AD) without any additional process. Currently prepared BT/NaCl humidity sensor shows an excellent sensitivity (245 pF/RH%) and superior response/recovery times (3s/4s) due to the NaCl ionization effect resulting in an immense interfacial polarization. Furthermore, the non-contact respiration signal variation using the BT/NaCl sensor was determined to be over 700% by maintaining the distance of 20 cm between the individual and the sensor. Through the AD-fabricated sensor in this study, we expect to develop a non-contact biological signal monitoring system that can be applied to various fields such as respiratory disease detection and management, infant respiratory signal observation, and touchless skin moisture sensing button.

Sintering Behavior and Mechanical Property of Transition Metal Carbide-Based Cermets by Spark Plasma Sintering (방전플라즈마 소결 공정 적용 전이금속 카바이드 서멧의 소결 및 기계적 특성)

  • Lee, Jeong-Han;Park, Hyun-Kuk;Hong, Sung-Kil
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.44-50
    • /
    • 2022
  • Transition metal carbides (TMCs) are used to process difficult-to-cut materials due to the trend of requiring superior wear and corrosion properties compared to those of cemented carbides used in the cutting industry. In this study, TMC (TiC, TaC, Mo2C, and NbC)-based cermets were consolidated by spark plasma sintering at 1,300 ℃ (60 ℃min) with a pressure of 60 MPa with Co addition. The sintering behavior of TMCs depended exponentially on the function of the sintering exponent. The Mo2C-6Co cermet was fully densified, with a relative density of 100.0 %. The Co-binder penetrated the hard phase (carbides) by dissolving and re-precipitating, which completely densified the material. The mechanical properties of the TMCs were determined according to their grain size and elastic modulus: TiC-6Co showed the highest hardness of 1,872.9 MPa, while NbC-6Co showed the highest fracture toughness of 10.6 MPa*m1/2. The strengthened grain boundaries due to high interfacial energy could cause a high elastic modules; therefore, TiC-6Co showed a value of 452 ± 12 GPa.

Degradation of All-Solid-State Lithium-Sulfur Batteries with PEO-Based Composite Electrolyte

  • Lee, Jongkwan;Heo, Kookjin;Song, Young-Woong;Hwang, Dahee;Kim, Min-Young;Jeong, Hyejeong;Shin, Dong-Chan;Lim, Jinsub
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.199-207
    • /
    • 2022
  • Lithium-sulfur batteries (LSBs) have emerged as a promising alternative to lithium-ion batteries (LIBs) owing to their high energy density and economic viability. In addition, all-solid-state LSBs, which use solid-state electrolytes, have been proposed to overcome the polysulfide shuttle effect while improving safety. However, the high interfacial resistance and poor ionic conductivity exhibited by the electrode and solid-state electrolytes, respectively, are significant challenges in the development of these LSBs. Herein, we apply a poly (ethylene oxide) (PEO)-based composite solid-state electrolyte with oxide Li7La3Zr2O12 (LLZO) solid-state electrolyte in an all-solid-state LSB to overcome these challenges. We use an electrochemical method to evaluate the degradation of the all-solid-state LSB in accordance with the carbon content and loading weight within the cathode. The all-solid-state LSB, with sulfur-carbon content in a ratio of 3:3, exhibited a high initial discharge capacity (1386 mAh g-1), poor C-rate performance, and capacity retention of less than 50%. The all-solid-state LSB with a high loading weight exhibited a poor overall electrochemical performance. The factors influencing the electrochemical performance degradation were revealed through systematic analysis.

Structure and Physical Properties of Fe/Si Multiayered Films with Very Thin Sublayers

  • Baek, J.Y;Y.V.Kudryavtsev;J.Y.Rhee;Kim, K.W.;Y.P.Le
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.173-173
    • /
    • 2000
  • Multilayered films (MLF) consisting of transition metals and semiconductors have drawn a great deal of interest because of their unique properties and potential technological applications. Fe/Si MLF are a particular topic of research due to their interesting antiferromagnetic coupling behavior. although a number of experimental works have been done to understand the mechanism of the interlayer coupling in this system, the results are controversial and it is not yet well understood how the formation of an iron silicide in the spacer layers affects the coupling. The interpretation of the coupling data had been hampered by the lack of knowledge about the intermixed iron silicide layer which has been variously hypothesized to be a metallic compound in the B2 structure or a semiconductor in the more complex B20 structure. It is well known that both magneto-optical (MO0 and optical properties of a metal depend strongly on their electronic structure that is also correlated with the atomic and chemical ordering. In order to understand the structure and physical properties of the interfacial regions, Fe/Si multilayers with very thin sublayers were investigated by the MO and optical spectroscopies. The Fe/si MLF were prepared by rf-sputtering onto glass substrates at room temperature with a totall thickness of about 100nm. The thicknesses of Fe and Si sublayers were varied from 0.3 to 0.8 nm. In order to understand the fully intermixed state, the MLF were also annealed at various temperatures. The structure and magnetic properties of Fe/Si MLF were investigated by x-ray diffraction and vibrating sample magnertometer, respectively. The MO and optical properties were measured at toom temperature in the 1.0-4.7 eV energy range. The results were analyzed in connection with the MO and optical properties of bulk and thin-film silicides with various structures and stoichiometries.

  • PDF