• Title/Summary/Keyword: interfacial bond

Search Result 188, Processing Time 0.022 seconds

Bond between FRP formworks and concrete-effect of surface treatments and adhesives

  • Goyal, Reema;Mukherjee, Abhijit;Goyal, Shweta
    • Steel and Composite Structures
    • /
    • 제20권3호
    • /
    • pp.671-692
    • /
    • 2016
  • FRP stay-in-place (SIP) formworks are designed as a support for casting concrete and as a tension reinforcement when concrete is cured. Bond development between SIP formwork and concrete is critical for FRP tension element to be effective. This paper reports the bond strength between FRP formwork and concrete for different interfacial treatments. A novel experimental setup is prepared for observing the bond behaviour. Three different adhesives with varying workability have been investigated. Along with the load-deformation characteristics, bond slip and strains in the formwork have been measured. A finite element numerical simulation was conducted for the experiments to understand the underlying mechanism. The results show that the adhesive bonding has the best bond strength.

메타카올린 및 실리카퓸 첨가율에 따른 구조용 PVA 섬유와 시멘트 복합재료의 부착특성 (Bond Properties of Structural Poly Vinyl Alcohol Fiber in Cement Based Composites with Metakaolin and Silica Fume Contents)

  • 이정우;박찬기
    • 한국농공학회논문집
    • /
    • 제54권5호
    • /
    • pp.9-16
    • /
    • 2012
  • In this study, the effect of metakaoline and silica fume on the bond performances of structural polyvinyl alcohol (PVA) fiber in cement mortar, including bond strength, interface toughness, and microstructure analysis are presented. Metakaoline and silica fume contents ranging from 0 % to 15 % are used in the mix proportions. Pullout tests are conducted to measure the bond performance of PVA fiber from cement mortar. Test results showed the incorporation of metakaoline and silica fume can effectively enhance the PVA fiber-cement mortar interfacial properties. Bond strength and interface toughness increased with metakaoline and silica fume content up to 10 % in cement mortar and decreased when the metakaoline and silica fume content reached 15 %. The microstructural observation confirms the findings on the interface bond mechanism drawn from the fiber pullout test results.

소결 알루미나의 금속접합 및 접합강도에 관한 연구 (Mo-Mn Metallizing on Sintered Alumina and It합s Bond Strength)

  • 이준;김영태;장성도;손용배
    • 한국세라믹학회지
    • /
    • 제22권6호
    • /
    • pp.58-70
    • /
    • 1985
  • The bond strength of metal to ceramic sealing in Mo-Mn metallizing was investigated by examining the effects of flux composition in alumina ceramics particle size of molybdenum metal powder wet hydrogen atmosphere and temperature in metallizing. The maximum bond strength was obtained when the glass phase filled almost all the microstructural cavities around the interfacial area with few micropores. Such a favorable microstrcutre waas formed and maximum bond strength was observed between 130$0^{\circ}C$. Also the metal to ceramic bond strength was increased using finer molybdenum metal powder than coarse powder. When content of $SiO_2$ in the flux of alumina ceramics was constant metal to ceramic bond strength was improved with increasing the ratio of CaO to MgO in the flux.

  • PDF

이장재와 이장면적의 차이에 따른 인장결합강도의 변화 (CHANGES OF TENSILE BOND STRENGTH ACCORDING TO THE DIFFERENCE IN LINING MATERIALS AND LINING AREA)

  • 박종덕;이용우;온영석;이광원
    • Restorative Dentistry and Endodontics
    • /
    • 제23권1호
    • /
    • pp.443-460
    • /
    • 1998
  • The purpose of this study was to estimate the changes of tensile bond strength according to the difference in lining materials and lining area. Seventy non-carious extracted human molars were used in the present study, and they were randomly assigned into 2 experimental groups according to the difference in lining materials. Each experimental group was subdivided into 3 groups according to the difference in lining area. Circular cavities were prepared on the dentin surface to a diameter of 1.5mm, 2.0mm, 2.5mm and the prepared cavities were filled with Fuji II LC( Glass Ionomer Cement : GIC) or Dycal. Dentin specimens without circular cavity were used as control group. The primer and bonding agent of All-Bond 2 and composite resin (Z-100, 3M Dental Products, U. S. A.) were applied to the exposed dentin surface with or without lining. Tensile bond strengths for the experimental specimens were then measured. To examine the interface between dentin and liner & between liner and composite resin, two specimens from each group were fabricated and observed under the SEM. The results were as follows. 1. Tensile bond strength for the specimens lined with GIC was higher than that for specimens lined with Dycal. However, there was no significant difference between two groups(p>0.05). 2. Tensile bond strength for the specimens lined with GIC in a diameter of 1.5mm(GIC-1.5mm lining group) was statistically higher than that for the GIC-2.0mm lining group and GIC-2.5mm lining group(p<0.05). 3. Tensile bond strength for the specimens lined with Dycal in a diameter of 2.5mm (Dycal-2.5mm lining group)was statistically lower than that for Dycal-1.5mm lining group and Dycal-2.0mm lining group(p<0.05). 4. It was possible to observe the good adhesion of the resin composite to the GIC and the presence of a fissure between GIC and dentin all along the interface. Interfacial gaps of 7.2-$72.2{\mu}m$ between GIC and dentin were observed. The interfacial gap between GIC and dentin at the cavity base was greater. However, the gap was gradually decreased toward the occlusal portion. 5. It was possible to observe the poor adhesion of the resin composite to the Dycal. The detachment of Dycal was occurred all along the composite resin-Dycal interface, and the gaps of 2.0-$30.1{\mu}m$ were formed. In all the specimens, polymerization shrinkage of resin composite caused the detachment of Dycal from the body of Dycal. At a Dycal-dentin interface. it was possible to observe the good adhesion. but poor adhesion with interfacial gap of 2.9-$26.8{\mu}m$ was observed partially.

  • PDF

Modeling of CNTs and CNT-Matrix Interfaces in Continuum-Based Simulations for Composite Design

  • Lee, Sang-Hun;Shin, Kee-Sam;Lee, Woong
    • 한국재료학회지
    • /
    • 제20권9호
    • /
    • pp.478-482
    • /
    • 2010
  • A series of molecular dynamic (MD), finite element (FE) and ab initio simulations are carried out to establish suitable modeling schemes for the continuum-based analysis of aluminum matrix nanocomposites reinforced with carbon nanotubes (CNTs). From a comparison of the MD with FE models and inferences based on bond structures and electron distributions, we propose that the effective thickness of a CNT wall for its continuum representation should be related to the graphitic inter-planar spacing of 3.4${\AA}$. We also show that shell element representation of a CNT structure in the FE models properly simulated the carbon-carbon covalent bonding and long-range interactions in terms of the load-displacement behaviors. Estimation of the effective interfacial elastic properties by ab initio simulations showed that the in-plane interfacial bond strength is negligibly weaker than the normal counterpart due to the nature of the weak secondary bonding at the CNT-Al interface. Therefore, we suggest that a third-phase solid element representation of the CNT-Al interface in nanocomposites is not physically meaningful and that spring or bar element representation of the weak interfacial bonding would be more appropriate as in the cases of polymer matrix counterparts. The possibility of treating the interface as a simply contacted phase boundary is also discussed.

LMC로 덧씌우기된 RC보의 비선형 휨 해석 (Nonlinear Flexural Analysis of RC Beam Overlayed by LMC)

  • 김성환;김동호;최성용;윤경구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.61-64
    • /
    • 2005
  • Recently to repair the structure of deteriorated concrete, LMC rehabilitation method is introduced. however, this method has the possible risks of brittle failure depending on bond performance of the interface. the prediction of interfacial behavior becomes essential to protect the failure. all of the studies which have been done about this field are only about material property such as strength, durability, bond. there is not enough data and studies about structural behavior and numerical analysis. therefore, in this study A flexural nonlinear analysis model of ABAQUS was proposed to predict the load-deflection response, interfacial stress, and ultimate strength. The parameter study showed that overlay thickness was a main influencing factor to the behavior of RC beam overlayed by LMC.

  • PDF

도재용착주조관용 비귀금속 합금의 사전 열처리가 도재-금속의 결합 강도에 미치는 효과 (The effect of oxidation heat treatment on porcelain to metal bond strength)

  • 김치영;남상용
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.43-46
    • /
    • 1997
  • The interfacial bond strength and microstructural analysis of pre-heat treated porcelain-fused-metal (PFM) were investigated using a mechanical three-point bending tester and scanning electron microscope(SEM). Four kinds of heat treated samples were prepared as follows; A: heating $1200^{\circ}F\rightarrow1600^{\circ}F$, holding 1min, reheating $\rightarrow1850^{\circ}F$, hold 3min under vacuum, B: heating $1200^{\circ}F\rightarrow1600^{\circ}F$ holding 1min, reheating $\rightarrow1850^{\circ}F$ under vacuum condition, C: heating $1200^{\circ}F\rightarrow1600^{\circ}F$, holding 1min, reheating $\rightarrow1850^{\circ}F$, holding 3min in the air, repeat same heat treatment process under vacuum condition, D: heating $1200^{\circ}F\rightarrow1600^{\circ}F$, holding 1min, reheating $\rightarrow1850^{\circ}F$, holding 1min in the air. The three-point bending test results shows that the interfacial bond strength of specimen B and C were higher than that of A and B. The SEM study reveals that Specimen C shows the highest surface density.

  • PDF

Structural Evolution and Electrical Properties of Highly Active Plasma Process on 4H-SiC

  • Kim, Dae-Kyoung;Cho, Mann-Ho
    • Applied Science and Convergence Technology
    • /
    • 제26권5호
    • /
    • pp.133-138
    • /
    • 2017
  • We investigated the interface defect engineering and reaction mechanism of reduced transition layer and nitride layer in the active plasma process on 4H-SiC by the plasma reaction with the rapid processing time at the room temperature. Through the combination of experiment and theoretical studies, we clearly observed that advanced active plasma process on 4H-SiC of oxidation and nitridation have improved electrical properties by the stable bond structure and decrease of the interfacial defects. In the plasma oxidation system, we showed that plasma oxide on SiC has enhanced electrical characteristics than the thermally oxidation and suppressed generation of the interface trap density. The decrease of the defect states in transition layer and stress induced leakage current (SILC) clearly showed that plasma process enhances quality of $SiO_2$ by the reduction of transition layer due to the controlled interstitial C atoms. And in another processes, the Plasma Nitridation (PN) system, we investigated the modification in bond structure in the nitride SiC surface by the rapid PN process. We observed that converted N reacted through spontaneous incorporation the SiC sub-surface, resulting in N atoms converted to C-site by the low bond energy. In particular, electrical properties exhibited that the generated trap states was suppressed with the nitrided layer. The results of active plasma oxidation and nitridation system suggest plasma processes on SiC of rapid and low temperature process, compare with the traditional gas annealing process with high temperature and long process time.

도재용착주조관용 비귀금속 합금의 사전 열처리가 도재-금속의 결합 강도에 미치는 효과 (The Effect of Oxidation Heat Treatment on Porcelain to Metal Bond Strength)

  • 김치영;남상용
    • 대한치과기공학회지
    • /
    • 제19권1호
    • /
    • pp.37-42
    • /
    • 1997
  • The interfacial bond strengh and microstructural analysis of pre-heat treated porcelain-fusedmetal(PFM) were investigated using a mechanical three-point bending tester and scanning electron microscope(SEM). Four kinds of heat treated samples were prepared as follows ; A: Heating $1200^{\circ}F{\to}1600^{\circ}F$, holding 1min, reheating ${\to}1850^{\circ}F$, hold 3min under vacuum, B: heating $1200^{\circ}F{\to}1600^{\circ}F$, holding 1min, reheating${\to}1850^{\circ}F$ under vacuum conditon, C: heating $1200^{\circ}F{\to}1600^{\circ}F$, holding 1min, reheating${\to}1850^{\circ}F$, holding 3min in the air, repeat same heat treatment process under vacuum condition, D: heating $1200^{\circ}F{\to}1600^{\circ}F$, holding 1min, reheating${\to}1850^{\circ}F$, holding 1min in the air. The three-point bening test result shows that the interfacial bond strength of specimen B and C were higher than that of A and D. The SEM study indicate that Specimen C shows the highest surface density.

  • PDF

고인성 섬유보강 복합체 내에서 폴리프로필렌 섬유의 계면 부착성능 (Interfacial Properties of Polypropylene Fiber in High Performance Fiber Reinforced Cement Composites)

  • 한병찬;전에스더;박완신;이영석;복산양;윤현도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.108-111
    • /
    • 2004
  • The polypropylene(PP) fiber is poised as a low cost alternative for reinforcement in structural applications in comparison with other high performance fibers, such as the polyvinyl-alcohol(PVA), polyethylene, carbon and aramid fiber. The mechanical properties of the composite are strongly determined by the interfacial behavior of fiber and cementitious matrix. The crack bridging mechanism contribute to composite toughness from activation of the fiber-matrix interface where energy is dissipated through debonding of the interface and fiber pullout. In this study, therefore, the pullout behavior of PP fibers is investigated. Experimental work includes the investigation of the interfacial properties, and the composite property. The quantification of interfacial properties, the frictional bond is achieved through single fiber pullout test. A study on the effect of inclination angle on fiber pullout behavior is also conducted.

  • PDF