• Title/Summary/Keyword: interfacial analysis

Search Result 636, Processing Time 0.023 seconds

Solid Electrolyte Technologies for Next-Generation Lithium Secondary Batteries (차세대 리튬이차전지용 고체 전해질 기술)

  • Kim, K.M.;Oh, J.M.;Shin, D.O.;Kim, J.Y.;Lee, Y.G.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.76-86
    • /
    • 2021
  • Technologies for lithium secondary batteries are now increasingly expanding to simultaneously improve the safety and higher energy and power densities of large-scale battery systems, such as electric vehicles and smart-grid energy storage systems. Next-generation lithium batteries, such as lithium-sulfur (Li-S) and lithium-air (Li-O2) batteries by adopting solid electrolytes and lithium metal anode, can be a solution for the requirements. In this analysis of battery technology trends, solid electrolytes, including polymer (organic), inorganic (oxides and sulfides), and their hybrid (composite) are focused to describe the electrochemical performance achievable by adopting optimal components and discussing the interfacial behaviors that occurred by the contact of different ingredients for safe and high-energy lithium secondary battery systems. As next-generation rechargeable lithium batteries, Li-S and Li-O2 battery systems are briefly discussed coupling with the possible use of solid electrolytes. In addition, Electronics and Telecommunications Research Institutes achievements in the field of solid electrolytes for lithium rechargeable batteries are finally introduced.

Tensile damage of reinforced concrete and simulation of the four-point bending test based on the random cracking theory

  • Chang, Yan-jun;Wan, Li-yun;Mo, De-kai;Hu, Dan;Li, Shuang-bei
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.289-299
    • /
    • 2022
  • Based on the random cracking theory, the cylinder RVE model of reinforced concrete is established and the damage process is divided into three stages as the evolution of the cracks. The stress distribution along longitude direction of the concrete and the steel bar in the cylinder model are derived. The equivalent elastic modulus of the RVE are derived and the user-defined field variable subroutine (USDFLD) for the equivalent elastic modulus is well integrated into the ABAQUS. Regarding the tensile rebars and the concrete surrounding the rebars as the equivalent homogeneous transversely isotropic material, and the FEM analysis for the reinforced concrete beams is conducted with the USDFLD subroutine. Considering the concrete cracking and interfacial debonding, the macroscopic damage process of the reinforced concrete beam under four-point bending loading in the simulation. The volume fraction of rebar and the cracking degree are mainly discussed to reveal their influence on the macro-performance and they are calibrated with experimental results. Comparing with the bending experiment performed with 8 reinforced concrete beams, the bending stiffness of the second stage and the ultimate load simulated are in good agreement with the experimental values, which verifies the effectiveness and the accuracy of the improved finite element method for reinforced concrete beam.

Bond-slip behavior of reactive powder concrete-filled square steel tube

  • Qiuwei, Wang;Lu, Wang;Hang, Zhao
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.819-830
    • /
    • 2022
  • This paper presented an experimental study of the bond-slip behavior of reactive powder concrete (RPC)-filled square steel tube. A total of 18 short composite specimens were designed forstatic push-out test, and information on their failure patterns, load-slip behavior and bond strength was presented. The effects of width-to-thickness ratio, height-to-width ratio and the compressive strength of RPC on the bond behavior were discussed. The experimental results show that:(1) the push-out specimens remain intact and no visible local buckling appears on the steel tube, and the interfacial scratches are even more pronounced at the internal steel tube of loading end; (2) the bond load-slip curves with different width-to-thickness ratios can be divided into two types, and the main difference is whether the curves have a drop in load with increasing slip; (3) the bond strength decreases with the increase of the width-to-thickness ratio and height-width ratio, while the influence of RPC strength is not consistent; (4) the slippage has no definite correlation with bond strength and the influence of designed parameters on slippage is not evident. On the basis of the above analysis, the expressions of interface friction stress and mechanical interaction stress are determined by neglecting chemical adhesive force, and the calculation model of bond strength for RPC filled in square steel tube specimens is proposed. The theoretical results agree well with the experimental data.

Analysis of Row Hammer Based on Interfacial Trap of BCAT Structure in DRAM (계면 트랩에 기반한 BCAT 구조 DRAM의 로우 해머 분석)

  • Chang Young Lim;Yeon Seok Kim;Min-Woo Kwon
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.220-224
    • /
    • 2023
  • Row hammering is a phenomenon in which bit flips occur in adjacent rows when accessing a particular row continuously, causing data damage, security problems, and poor computing performance. This paper analyzes the cause and response method of row hammering through TCAD simulation in 2ynm DRAM. In the experiment, the row hammering is reproduced while changing the parameters of the trap and the device structure, and the trap density, temperature. It analyzes the relationship with Active Wisdom, etc. As a result, it was confirmed that changes in trap parameters and device structures directly affect ΔVcap/pulse. This enables a fundamental understanding of low hammering and finding countermeasures, and can contribute to improving the stability and security of DRAM.

Analysis and modeling of hyperstatic RC beam bonded by composite plate symmetrically loaded and supported

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Rabia, Benferhat
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.591-603
    • /
    • 2022
  • The flexural strengthening of reinforced concrete beams by external bonding of composite materials has proved to be an efficient and practical technique. This paper presents a study on the flexural performance of reinforced concrete continuous beams with three spans (one span and two cantilevered) strengthened by bonding carbon fiber fabric (CFRP). The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened continuous beam, i.e., the continuous concrete beam, the FRP plate and the adhesive layer. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends. Remarkable effect of shear deformations of adherends has been noted in the results. The theoretical predictions are compared with other existing solutions that shows good agreement, and It shows the effectiveness of CFRP strips in enhancing shear capacity of continuous beam. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite beam.

Combined Effects of Sustained Load and Temperature on Pull-off Strength and Creep Response between CFRP Sheet and Concrete Using Digital Image Processing (디지털 이미지 분석을 통한 지속 하중과 온도의 복합 환경이 CFRP 쉬트와 콘크리트의 부착강도 및 크리프 거동에 미치는 영향 분석)

  • Jeong, Yo-Seok;Lee, Jae-Ha;Kim, Woo-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.535-544
    • /
    • 2016
  • This paper aims at examining the effects of sustained load and elevated temperature on the time-dependent deformation of a carbon fiber reinforced polymer (CFRP) sheets bonded to concrete as well as the pull-off strength of single-lap shear specimens after the sustained loading period using digital images. Elevated temperature during the sustained loading period resulted in increased slip of the CFRP composites, whereas increased curing time of the polymer resin prior to the sustained loading period resulted in reduced slip. Pull-off tests conducted after sustained loading period showed that the presence of sustained load resulted in increased pull-off strength and interfacial fracture energy. This beneficial effect decreased with increased creep duration. Based on analysis of digital images, results on strain distributions and fracture surfaces indicated that stress relaxation of the epoxy occurred in the 30 mm closest to the loaded end of the CFRP composites during sustained loading, which increased the pull-off strength provided the failure locus remained mostly in the concrete. For longer sustained loading duration, the failure mode of concrete-CFRP bond region can change from a cohesive failure in the concrete to an interfacial failure along the concrete/epoxy interface, which diminished part of the strength increase due to the stress relaxation of the adhesive.

A Study on the Prediction of Nugget Diameter of Resistance Spot Welded Part of 1.2GPa Ultra High Strength TRIP Steel for Vehicle (차체용 1.2GPa급 초고장력 TRIP강판의 저항 점 용접부 너겟 지름 예측에 관한 연구)

  • Shin, Seok-Woo;Lee, Jong-Hun;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.52-60
    • /
    • 2018
  • In the automobile industry, in order to increase the fuel efficiency and conform to the safety regulations, it is necessary to make the vehicles as light as possible. Therefore, it is crucial to manufacture dual phase steels, complex phases steels, MS steels, TRIP steels, and TWIP from high strength steels with a tensile strength of 700Mpa or more. In order to apply ultra-high tensile strength steel to the body, the welding process is essential. Resistance spot welding, which is advantageous in terms of its cost, is used in more than 80% of cases in body welding. It is generally accepted that ultra-high tensile strength steel has poor weldability, because its alloy element content is increased to improve its strength. In the case of the resistance spot welding of ultra-high tensile steel, it has been reported that the proper welding condition area is reduced and interfacial fracture and partial interfacial fracture occur in the weld zone. Therefore, research into the welding quality judgment that can predict the defect and quality in real time is being actively conducted. In this study, the dynamic resistance of the weld was monitored using the secondary circuit process variables detected during resistance spot welding, and the factors necessary for the determination of the welding quality were extracted from the dynamic resistance pattern. The correlations between the extracted factors and the weld quality were analyzed and a regression analysis was carried out using highly correlated pendulums. Based on this research, a regression model that can be applied to the field was proposed.

A Numerical Analysis of the Behavior of Liquid Film Around a Rotating Cylinder (회전하는 실린더 주변 액막의 거동에 대한 수치해석적 연구)

  • Lee, Sang-Hyuk;Lee, Jung-Hee;Hur, Nahm-Keon;Seo, Young-Jin;Kim, In-Cheol;Lee, Sung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.481-486
    • /
    • 2011
  • It is important to predict the behavior of a liquid film around a rotating cylinder in the film coating process of the steel industry. When the cylinder rotates, the behavior of the liquid film on the rotating cylinder surface is influenced by the cylinder diameter, the rotation speed, the gravitational force, and the fluid properties. These parameters determine the liquid film thickness and the rise of the film on the cylinder surface. In the present study, the two-phase interfacial flow of the liquid film on the rotating cylinder were numerically investigated by using a VOF method. For various rotation speeds, cylinder diameters and fluid viscosities, the behavior of liquid film on the rotating cylinder were predicted. Thicker film around the rotating cylinder was observed with an increase in the rotation speed, cylinder diameter, and fluid viscosity. The present results for the film thickness agreed well with available experimental and analytical results.

Applicability Evaluation of Two-stages and Dual Media Filtration System by the Small-scale Pilot Plant (이단이층 복합여과시스템의 소규모 파일롯 플랜트 적용성 평가)

  • Woo, Dal-Sik;Song, Si-Byum;Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.4
    • /
    • pp.857-864
    • /
    • 2009
  • This study aimed at developing the two stage and dual filtration system. It has a sand + activated carbon layer above the underdrain system and a sand layer above the middledrain system for pretreatment. When retrofitting an old filter bed or designing a new one, this technology can substitute the existing sand filter bed without requiring a new site. In order to extend the filtering duration, the upper layer of the filter bed consists of the rapid sand filtration with large particles which pre-treats and removes coarse particles and turbidity matters. The middle layer has biological activated carbon(BAC) and granular activated carbon(GAC) to eliminate dissolved organic matters, disinfection by-products precursors etc. The lower layer consists of the sand filtration for the post filtering mode. In this study, a pilot plant of two stage and dual filtration system was operated for 4 months in the S water treatment plant in Kyounggi-Do. The stability of turbidity was maintained below 1NTU. The TOC, THMFP and HAAFP were removed about 90% by two stage and dual filtration system, which is almost 2 times higher than S WTP. From analysis result of HPC along the depth of activated carbon + sand layer at 2nd stage, microorganism was mostly not detected, however, increment of HPC was shown as it becomes deeper. It indicates that growth of microorganism is occurred at activated carbon layer.

Interfacial Adhesion and Reliability between Epoxy Resin and Polyimide for Flexible Printed Circuit Board (연성인쇄회로기판의 에폭시수지와 폴리이미드 사이의 계면접착력 및 신뢰성 평가)

  • Kim, Jeong-Kyu;Son, Kirak;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.75-81
    • /
    • 2017
  • The effects of KOH pretreatment and annealing conditions on the interfacial adhesion and the reliability between epoxy resin and polyimide substrate in the flexible printed circuit board were quantitatively evaluated using $180^{\circ}$ peel test. The initial peel strength of the polyimide without the KOH treatment was 29.4 g/mm and decreased to 10.5 g/mm after 100hrs at $85^{\circ}C/85%$ R.H. temperature/humidity treatment. In case of the polyimide with annealing after KOH treatment, initial peel strength was 29.6 g/mm and then maintained around 27.5 g/mm after $85^{\circ}C/85%$ R.H. temperature/humidity treatment. Systematic X-ray photoelectron spectroscopy analysis results showed that the peel strength after optimum annealing after KOH treatment was maintained high not only due to effective recovery of the polyimide damage by the polyimide surface treatment process, but also effective removal of metallic ions and impurities during various wet process.