• Title/Summary/Keyword: interfacial activation

Search Result 50, Processing Time 0.043 seconds

Molecular Structures and Catalytic Mechanism of Bacterial Lipases. (세균성 리파제의 분자구조와 작용기작)

  • 김형권
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.311-321
    • /
    • 2003
  • Bacteria produce lipases, which can catalyze both the hydrolysis and the synthesis of long chain triglycerides. These reactions usually proceed with high regioselectivity and enantioselectivity, and, therefore, lipases have become very important biocatalysts used in organic chemistry. 3D lipase structures were solved from several bacterial lipases. They have an $\alpha/\beta$ hydrolase fold and a catalytic triad consisting of a nucleophilic serine, and an aspartate or glutamate residue that is hydrogen bonded to a histindine. Active sites are covered with $\alpha$-helical lid structure, of which movement is involved in the enzyme's activation at oil/water interface. Four substrate binding pockets were identified for triglycerides: an oxyanion hole and three pockets accommodating the fatty acids bound at positions sn-1, sn-2, and sn-3. These pockets determine the enantiopreference of a lipase. The understanding of structure-function relationships as well as the development of molecular evolution techniques will enable researchers to tailor new lipases for biotechnological applications.

Oxidation Reaction of silicon Oxids fabricated by Rapid Thermal Process in $N_2$O ambient ($N_2$O 분위기에서 RTP로 제조한 실리콘 산화막의 산화 반응)

  • Park, Jin-Seong;Lee, U-Seong;Sim, Tae-Eon
    • Korean Journal of Materials Research
    • /
    • v.3 no.1
    • /
    • pp.7-11
    • /
    • 1993
  • Abstract Oxidation kinetics of silicon oxide films formed by rapid thermal oxidizing Si substrate in $N_2$O ambient studied. The data on $N_2$0 oxidation shows that the interfacial nitrogen-rich layers results in oxide growth in the parabolic regime by impeding oxidant diffusion to the Si$O_2$-Si interface even for ultrathin oxides. The activation energy of parablic rate constant, B, is about 1.5 eV, and the energy increses with oxide thickness.

  • PDF

Sn계 무연 솔더에 관한 연구

  • 이창배;정승부;서창제
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.75-87
    • /
    • 2001
  • Three different kinds of substrate used in this study : bare Cu substrate, Ni-P/Cu substrate with a Ni-P layer thickness of $5\mu\textrm{m},$ and Au/Ni-P/Cu substrate with the Ni-P and Au layers of $0.15\mu\textrm{m}$ and $5\mu\textrm{m}$ thickness respectively. The wettability of various Sn-base solders was affected by the substrate metal finish used, i.e., nickel, gold and copper. On the Au/Ni-F/Cu substrate, Sn-base solders wet better than any of the other substrate metal finishes tested. The interfacial reaction between various substrate and Sn-base solder was investigated at $70^{\circ}C,$ $100^{\circ}C,$ $120^{\circ}C,$ $150^{\circ}C,$ $170^{\circ}C$ and $200^{\circ}C$ for reaction times ranging from 0 day to 60 day. Intermetallic phases was formed along a Sn-base solder/ various substrate interface during solid-state aging. The apparent activation energy for growth of Sn-Ag/Cu, Sn-Ag-Bi/Cu, and Sn-Bi/Cu couples were 65.4, 88.6, and 127.9 Kj/mol, respectively. After isothermal aging, the fracture surface shoved various characteristics depending on aging temperature and time, and the types of BGA pad.

  • PDF

Effect of Surface-Modified Carbon Fiber on the Mechanical Properties of Carbon/Epoxy Composite for Bipolar Plate of PEMFC (표면처리 탄소섬유가 PEMFC용 탄소/에폭시 복합재료 분리판의 기계적 강도에 미치는 영향)

  • LEE, HONGKI;HAN, KYEONGSIK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.49-56
    • /
    • 2020
  • Epoxy/carbon composite was used to prepare a bipolar plate for polymer electrolyte membrane fuel cell (PEMFC). Phenol novolac-type epoxy and diglycidyl ether of bisphenol A (DGEBA)-type epoxy mixture was used as a matrix and graphite powder, carbon fiber (CF) and graphite fiber (GF) were used as carbon materials. In order to improve the mechanical properties of the bipolar plate, surface-modified CF was incorporated into the epoxy/carbon composite. To determine the cure temperature of the epoxy mixture, differential scanning calorimetry (DSC) analysis was performed and the data were introduced to Kissinger equation in order to get reaction activation energy and pre-exponential factor. Tensile and flexural strength was obtained by using universal testing machine (UTM). The surface morphology of the fractured specimen and the interfacial morphology between epoxy matrix and CF or GF were observed by a scanning electron microscopy (SEM).

Current-Voltage Characteristics at Annealed Be-Cu Alloy Interfaces (열처리된 Be-Cu 합금 계면에서 전류-전압 특성)

  • 천장호;부종욱
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.12
    • /
    • pp.31-38
    • /
    • 1991
  • The current-voltage characteristics at annealed Be-Cu alloy(1.8-2 wt% Be, 0.2 wt% Co+Ni) interfaces have been studied by means of the cyclic voltammetric method. The specimens were annealed in nitrogen gas($N_{2}$) furnace at 36$0^{\circ}C$ for 1.5 hours. After annealing, the vickers hardness(HV) was increased from 210 to 385. The used solutions were distilled water(H$_{2}$O), 10$^{-3}M\;CsNO_{2},10^{-2}M\;KCl,10^{-2}M\;KOH,10^{-4}M\;H_{2}SO_{4}$ aqueous electrolytes, and ethylalcohol ($C_{2}H_{5}OH$), etc. The cyclic voltammograms showed significant current-voltage characteristics between the annealed and unannealed specimens at the same conditions. The age hardening and the related surface potential barrer and dissolution effects have been observed during the whole experimental process. The dissolution process of annealed Be-Cu alloys was effectively retarded by the age hardening phenomenon. The age hardening effect also raised the surface potential barrier of Be-Cu alloys. The interfacial phenomena of Be-Cu alloys seem to be one of good models for understanding the activation process.

  • PDF

On the Reaction Kinetics of GaN Particles Formation from GaOOH (GaOOH로부터 GaN 분말 형성의 반응역학에 관하여)

  • Lee Jaebum;Kim Seontai
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.348-352
    • /
    • 2005
  • Gallium oxyhydroxide (GaOOH) powders were heat-treated in a flowing ammonia gas to form GaN, and the reaction kinetics of the oxide to nitride was quantitatively determined by X-ray diffraction analysis. GaOOH turned into intermediate mixed phases of $\alpha-\;and\;\beta-Ga_2O_3$, and then single phase of GaN. The reaction time for full conversion $(t_c)$ decreased as the temperature increased. There were two-types of rapid reaction processes with the reaction temperature in the initial stage of nitridation at below $t_c$, and a relatively slow processes followed over $t_c$ does not depends on temperatures. The nitridation process was found to be limited by the rate of an interfacial reaction with the reaction order n value of 1 at $800^{\circ}C$ and by the diffusion-limited reaction with the n of 2 at above $1000^{\circ}C$, respectively, at below $t_c$. The activation energy for the reaction was calculated to be 1.84 eV in the temperature of below $830^{\circ}C$, and decreased to 0.38 eV above $830^{\circ}C$. From the comparative analysis of data, it strongly suggest the rate-controlling step changed from chemical reaction to mass transport above $830^{\circ}C$.

Characteristics and Microstructure of Matrix Retaining Electrolyte in Phosphoric Acid Fuel Cell Prepared by Tape Casting (Tape Casting법으로 제조한 인산형 연료전지 전해질 매트릭스의 미세구조 및 특성)

  • 윤기현;허재호;장재혁;김창수
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.375-380
    • /
    • 1994
  • Matrices retaining electrolyte in phosphoric acid fuel cell were prepared with SiC to SiC whisker mixing ratios of 1:0.5, 1:1, 1:1.5, 1:2, 1:3 by tape casting method. When viscosity of the slurry was 5.9 poise and the SiC to SiC whisker mixing ratios were 1:1, 1:1.5, 1:2, the ranges of porosity, acid absorbency and bubble pressure were 80~90%, 2.5~6 and 700~2200 mmH2O, respectively. Those ranges are acceptable for a practical electrolyte-retaining matrix. With increasing the mixing ratio of SiC whisker to SiC, the porosity and the vol.% of large pores in the main pore size distribution which is between 1 and 10 ${\mu}{\textrm}{m}$, increased rapidly. Impedance spectroscopy was measured to know characteristics of matrix inside and contact region of matrix to catalyst layer. When the SiC to SiC whisker mixing ratio was 1:2, hydrogen ions were transported in the matrix most effectively because of high ionic conductivity and low activation energy due to high acid absorbency in spite of high interfacial resistance. The cell current density of the cell made using the matrix was 220 mA/$\textrm{cm}^2$ at 0.7 V.

  • PDF

Synthesis and Magnetic Property of Nanocrystalline Fe-Ni-Co Alloys during Hydrogen Reduction of Ni0.5Co0.5Fe2O4 (Ni0.5Co0.5Fe2O4의 수소환원에 의한 나노구조 Fe-Ni-Co 합금의 제조 및 자성특성)

  • Paek, Min Kyu;Do, Kyung Hyo;Bahgat, Mohamed;Pak, Jong Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.167-173
    • /
    • 2011
  • Nickel cobalt ferrite($Ni_{0.5}Co_{0.5}Fe_2O_4$) powder was prepared through the ceramic route by the calcination of a stoichiometric mixture of NiO, CoO and $Fe_2O_3$ at $1100^{\circ}C$. The pressed pellets of $Ni_{0.5}Co_{0.5}Fe_2O_4$ were isothermally reduced in pure hydrogen at $800{\sim}1100^{\circ}C$. Based on the thermogravimetric analysis, the reduction behavior and the kinetic reaction mechanisms of the synthesized ferrite were studied. The initial ferrite powder and the various reduction products were characterized by X-ray diffraction, scanning electron microscopy, reflected light microscope and vibrating sample magnetometer to reveal the effect of hydrogen reduction on the composition, microstructure and magnetic properties of the produced Fe-Ni-Co alloy. The arrhenius equation with the approved mathematical formulations for the gas solid reaction was applied to calculate the activation energy($E_a$) and detect the controlling reaction mechanisms. In the initial stage of hydrogen reduction, the reduction rate was controlled by the gas diffusion and the interfacial chemical reaction. However, in later stages, the rate was controlled by the interfacial chemical reaction. The nature of the hydrogen reduction and the magnetic property changes for nickel cobalt ferrite were compared with the previous result for nickel ferrite. The microstructural development of the synthesized Fe-Ni-Co alloy with an increase in the reduction temperature improved its soft magnetic properties by increasing the saturation magnetization($M_s$) and by decreasing the coercivity($H_c$). The Fe-Ni-Co alloy showed higher saturation magnetization compared to Fe-Ni alloy.

Time-resolved photoluminescence spectroscopy of InGaN multiple quantum wells

  • Lee, Joo-In;Shin, Eun-joo;Lee, J.Y. m;Kim, S.T.;G.S. Lim;Lee, H.G.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.1
    • /
    • pp.23-26
    • /
    • 2000
  • We have fabricated by metal organic chemical vapor deposition (MOCVD) In$\_$0.13/Ga$\_$0.87/N/GaN multiple quantum well (MQW) with thickness as thin as 10 A and barriers also of th same width on (0001) sapphire substrate. We have investigated this thin MQW by steady-state and time-resolved photoluminescence(PL) in picosecond time scale in a wide temperature range from 10 to 290 K. In the PL at 10 K, we observed a broad peak at 3.134 eV which was attributed to the quantum well emission of InGaN. The full width at half maximum (FWHM) of this peak was 129 meV at 10 K and its broadening at low temperatures was considered to be due to compositional fluctuations and interfacial disorder in the alloy. The narrow width of the quantum well was mainly responsible for the broadening of the emission linewidth. We also observed an intense and sharp peak at 3.471 eV of GaN barrier. From the temperature dependent PL measurements, the activation energy of the InGaN quantum well emision peak was estimated to be 69 meV. The lifetime of the quantum well emission was found to be 720 ps at 10 K, which was explained in terms of the exciton localization arising from potential fluctuations.

  • PDF

Surface Segregation of Hydroniums and Chlorides in a Thick Ice Film at Higher Temperatures

  • Lee, Du Hyeong;Bang, Jaehyeock;Kang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.263-263
    • /
    • 2013
  • This work examines the dynamic properties of ice surfaces in vacuum for the temperature range of 140~180 K, which extends over the onset temperatures for ice sublimation and the phase transition from amorphous to crystallization ice. In particular, the study focuses on the transport processes of excess protons and chloride ions in ice and their segregative behavior to the ice surface. These phenomena were studied by conducting experiments with a relatively thick (~100 BL) ice film constructed with a bottom $H_2O$ layer and an upper $D_2O$ layer, with excess hydronium and chloride ions trapped at the $H_2O$/$D_2O$ interface as they were generated by the ionization of hydrogen chloride. The migration of protons, chloride ions, and water molecules to the ice film surface and their H/D exchange reactions were measured as a function of temperature using the methods of low energy sputtering (LES) and Cs+ reactive ion scattering (RIS). Temperature programmed desorption (TPD) experiments monitored the desorption of water and hydrogen chloride from the surface. Our observations indicated that both hydronium and chloride ions migrated from the interfacial layer to segregate to the surface at high temperature. Hydrogen chloride gas desorbs via recombination reaction of hydronium and chloride ions floating on the surface. Surface segregation of these species is driven by thermodynamic potential gradient present near the ice surface, whereas in the bulk, their transport is facilitated by thermal diffusion process. The finding suggests that chlorine activation reactions of hydrogen chloride for polar stratospheric ice particles occur at the surface of ice within a depth of at most a few molecular layers, rather than in the bulk phase.

  • PDF