• Title/Summary/Keyword: interface temperature

Search Result 2,045, Processing Time 0.032 seconds

고온 환경하에서의 CFRP의 인장강도특성에 관한 연구 (Study on the Tensile Strength Characteristics of CFRP under the High Temperature Condition)

  • 박재범;황태경;김형근;도영대
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.86-89
    • /
    • 2006
  • 고온 특성이 매우 우수한 탄소섬유와 상대적으로 내열성능이 취약한 Epoxy수지로 구성된 CFRP재의 고온 환경 하에서의 인장강도 특성에 관한 실험적 및 해석적 연구가 수행되었다. 특히, CFRP재의 인장 강도특성에 결정적으로 작용하는 섬유와 Epoxy 수지와의 계면의 특성에 초점을 맞추었으며, 고온 환경하에서 점차적으로 저하되는 계면 강도의 변화가 CFRP재의 인장강도에 미치는 영향을 정량적으로 평가하였다. 이를 위해, Strand 인장 및 Short Beam 시험을 고온 환경 하에서 실시하였으며, Curtin-Takeda Model를 도입하여 이론해석을 실시하였다.

  • PDF

Toughened 에폭시와 실리콘고무 계면의 교류 절연파괴 현상에 관한 연구 (Study on the AC Interfacial Breakdown Properties in the Interface between toughened Epoxy and Silicone Rubber)

  • 박우현;이기식
    • 한국전기전자재료학회논문지
    • /
    • 제15권12호
    • /
    • pp.1079-1084
    • /
    • 2002
  • Because complex insulation method is used in EHV(extra high voltage) insulation systems, macro Interfaces between two different bulk materials which affect the stability of insulation system exist inevitably. Interface between toughened epoxy and silicone rubber was selected as a interface in EHV insulation systems and tested AC interfacial breakdown properties with variation of many conditions to influence on electrical Properties, such as interfacial pressure, roughness and oil. Specimen was designed to reduce the effect of charge transport from electrode in the process of breakdown and to have the tangential electrical potential with the direction of the interface between epoxy and silicone rubber by using FEM(finite elements method). It could control the interfacial pressure, roughness and viscosity of oil. From the result of this study, it was shown that the interfacial breakdown voltage is improved by increasing interfacial Pressure and oil. In particular, the dielectric strength saturates at certain interracial Pressure level. The decreasing ratio of the interfacial breakdown voltage in non-oiled specimen was increased by the temperature rising, while oiled specimen was not affected by temperature.

Measurement of Interface Trapped Charge Densities $(D_{it})$ in 6H-SiC MOS Capacitors

  • Lee Jang Hee;Na Keeyeol;Kim Kwang-Ho;Lee Hyung Gyoo;Kim Yeong-Seuk
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.343-347
    • /
    • 2004
  • High oxidation temperature of SiC shows a tendency of carbide formation at the interface which results in poor MOSFET transfer characteristics. Thus we developed oxidation processes in order to get low interface charge densities. N-type 6H-SiC MOS capacitors were fabricated by different oxidation processes: dry, wet, and dry­reoxidation. Gate oxidation and Ar anneal temperature was $1150^{\circ}C.$ Ar annealing was performed after gate oxidation for 30 minutes. Dry-reoxidation condition was $950^{\circ}C,$ H2O ambient for 2 hours. Gate oxide thickness of dry, wet and dry-reoxidation samples were 38.0 nm, 38.7 nm, 38.5 nm, respectively. Mo was adopted for gate electrode. To investigate quality of these gate oxide films, high frequency C- V measurement, gate oxide leakage current, and interface trapped charge densities (Dit) were measured. The interface trapped charge densities (Dit) measured by conductance method was about $4\times10^{10}[cm^{-1}eV^{-1}]$ for dry and wet oxidation, the lowest ever reported, and $1\times10^{11}[cm^{-1}eV^{-1}]$ for dry-reoxidation

  • PDF

환경에 따른 MZT/LZT 디스크의 tribological 특성 (Tribological Behavior of MZ/LZT disk under Various Environmental Conditions)

  • 박용식;김대은
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.53-60
    • /
    • 1999
  • As the flying height decreased, it is essential that hard disk drives perform reliable under various environmental conditions. In this paper the tribological characteristics of a head/disk interface are investigated under various temperature, relative humidity, altitude and outgas conditions. Specially, Contact-Start-Stop(CSS) tests were performed to assess the stiction, acoustic emission, slider take-off behavior, and track average amplitude(TAA). It is shown that the surface damage and head failure are accelerated by high temperature and humidity as well as low ambient pressure.

  • PDF

Singular Residual Stresses at Interface of Compound Cylinders

  • Lee, S.S.;Kim, T.H.;Kim, J.G.;Park, K.W.;Hwang, J.K.
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(3)
    • /
    • pp.305-310
    • /
    • 1996
  • This paper concerns the cladding residual stresses in a reactor vessel induced during cooling from the manufacturing temperature down to room temperature Finite element results show that very large stress gradients are present at the interface corner and such stress singularity might lead to local yielding or cladding-base metal debonding.

  • PDF

Reliability Aging of Oxide Integrity on Low Temperature Polycrystalline Silicon TFTs

  • Chen, Chih-Chiang;Hung, Wen-Yu;Chen, Pi-Fu;Yeh, Yung-Hui
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.515-518
    • /
    • 2002
  • In this paper, we demonstrate the impact of oxide interface-state on low temperature poly-Si TFTs. The TFTs with interface-state exhibit poor performance and serious degradation under hot carrier and gate bias stress. Our results indicate that the worse oxide integrity cause initial characteristic shift and device instability.

  • PDF

고분자 박막에서의 열응력 해석 (Analysis of Thermal Stresses in Polymeric Thin Film)

  • 이상순
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.389-394
    • /
    • 2003
  • In this study, the stress singularity factors generated during cooling down from high curing temperature to room temperature have been analyzed for the viscoelastic thin film. The time domain boundary element method has been employed to investigate the behavior of stresses for the whole interface. Within the context of a linear viscoelastic theory, a stress singularity exists at the point where the interface between the elastic substrate and the viscoelastic thin film intersects the free surface.

  • PDF

Wetting of Galvanised Steel by An Epoxy Adhesive: Effects of Surface Oil

  • Shanahan, M.E.R.;Greiveldinger, M.
    • 접착 및 계면
    • /
    • 제3권1호
    • /
    • pp.20-23
    • /
    • 2002
  • The wetting properties of an uncured epoxy resin on both clean and oiled, galvanised steel have been studied. Since the polymer is very viscous at ambient temperature, and also with an aim to simulate industrial conditions, the spreading of drops of resin during a heating cycle (temperature increase at $10^{\circ}C/min$) was recorded and analysed. On clean steel, a contact angle, ${\theta}$, vs time, t, plot shows sigmoidal behaviour, whereas on the oiled substrate, spreading almost ceases in an intermediate stage. This strange behaviour is attributed to significant oil absorption by the polymer.

  • PDF

상온 및 저온에서의 탄소와 유리섬유/에폭시 복합재료의 계면특성 비교 (Comparison of Interfacial Aspects of Carbon and Glass Fibers/Epoxy Composites by Microdroplet Tests at Low and Room Temperatures)

  • 왕작가;공조엘;김명수;박종만;엄문광
    • 접착 및 계면
    • /
    • 제10권4호
    • /
    • pp.162-168
    • /
    • 2009
  • 극저온 온도에서 최적복합재료물성치의 사전 연구로서, 실온과 저온, 즉 $25^{\circ}C$$-10^{\circ}C$에서 카본 혹은 유리섬유가 함침된 에폭시 복합재료의 계면 물성치가 미세역학인 시험법을 사용하여 평가되었다. 인장과 압축하중 조건에서 저온에서의 기계적인 강성도가 상온에서의 강성도보다 증대하였다. 실온과 저온에서의 계면전단강도가 에폭시 기지의 인성과 겉보기 강성도를 사용하여 상호 비교하였다. 기지의 강성도 향상으로 인해 계면전단강도가 실온보다 저온에서 높게 나타났다. 유리와 카본 섬유의 인장 강도들의 통계적인 분포가 다른 온도의 범위 평가되었고, 이것들은 섬유의 고유결함과 견고함에 의해서 결정된다.

  • PDF

Effect of Heat Treatment on Microstructure and Mechanical Properties of Electromagnetic Duo-Cast Al Hybrid Material

  • Suh, Jun Young;Park, Sung Jin;Kwon, Do-Kyun;Chang, Si Young
    • 한국재료학회지
    • /
    • 제28권9호
    • /
    • pp.499-505
    • /
    • 2018
  • This investigates the microstructure and mechanical properties of Al hybrid material prepared by electromagnetic duo-casting to determine the effect of heat treatment. The hybrid material is composed of an Al-Mg-Si alloy, pure Al and the interface between the Al-Mg-Si alloy and pure Al. It is heat-treated at 373, 573 and 773K for 1h and T6 treated (solution treatment at 773K for 1h and aging at 433K for 5h). As the temperature increases, the grain size of the Al-Mg-Si alloy in the hybrid material increases. The grain size of the T6 treated Al-Mg-Si alloy is similar to that of one heat-treated at 773K for 1h. The interface region where the micro-hardness becomes large from the pure Al to the Al-Mg-Si alloy widens with an increasing heat temperature. The hybrid material with a macro-interface parallel to the tensile direction experiences increased tensile strength, 0.2 % proof stress and the decreased elongation after T6 heat treatment. On the other hand, in the vertical direction to the tensile direction, there is no great difference with heat treatment. The bending strength of the hybrid material with a long macro-interface to the bending direction is higher than that with a short macro-interface, which is improved by heat treatment. The hybrid material with a long macro-interface to the bending direction is fractured by cracking through the eutectic structure in the Al-Mg-Si alloy. However, in the hybrid material with a short macro-interface, the bending deformation is observed only in the limited pure Al.