• Title/Summary/Keyword: interface oxidation

Search Result 296, Processing Time 0.03 seconds

Oxidation Process of GaN Schottky Diode for High-Voltage Applications (고전압 응용분야를 위한 GaN 쇼트키 다이오드의 산화 공정)

  • Ha, Min-Woo;Han, Min-Koo;Hahn, Cheol-Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2265-2269
    • /
    • 2011
  • 1 kV high-voltage GaN Schottky diode is realized using GaN-on-Si template by oxidizing Ni-Schottky contact. The Auger electron spectroscopy (AES) analysis revealed the formation of $NiO_x$ at the top of Schottky contact. The Schottky contact was changed to from Ni/Au to Ni/Ni-Au alloy/Au/$NiO_x$ by oxidation. Ni diffusion into AlGaN improves the Schottky interface and the trap-assisted tunneling current. In addition, the reverse leakage current and the isolation-leakage current are efficiently suppressed by oxidation. The isolation-leakage current was reduced about 3 orders of magnitudes. The reverse leakage current was also decreased from 2.44 A/$cm^2$ to 8.90 mA/$cm^2$ under -100 V-biased condition. The formed group-III oxides ($AlO_x$ and $GaO_x$) during the oxidation is thought to suppress the surface leakage current by passivating surface dangling bonds, N-vacancies and process damages.

Microstructural characterization of accident tolerant fuel cladding with Cr-Al alloy coating layer after oxidation at 1200 ℃ in a steam environment

  • Park, Dong Jun;Jung, Yang Il;Park, Jung Hwan;Lee, Young Ho;Choi, Byoung Kwon;Kim, Hyun Gil
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2299-2305
    • /
    • 2020
  • Zr alloy specimens were coated with Cr-Al alloy to enhance their resistance to oxidation. The coated samples were oxidized at 1200 ℃ in a steam environment for 300 s and showed extremely low oxidation when compared to uncoated Zr alloy specimens. The microstructure and elemental distribution of the oxides formed on the surface of Cr-Al alloys have been investigated by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). A very thin protective layer of Cr2O3 formed on the outer surface of the Cr-Al alloy, and a thin Al2O3 layer was also observed in the Cr-Al alloy matrix, near the surface. Our results suggest that these two oxide layers near the surface confers excellent oxidation resistance to the Cr-Al alloy. Even after exposure to a high temperature of 1200 ℃, inter-diffusion between the Cr-Al alloy and the Zr alloy occurred in very few regions near the interface. Analysis of the inter-diffusion layer by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS) measurement confirmed its identity as Cr2Zr.

Heat Resistance Properties of Thin Section HiSiMo Ductile Iron for Exhaust Manifold (배기 매니폴드용 박육 고규소 구상흑연주철의 내열 특성)

  • Lee, Do-Kyung;Kim, Sung-Gyu;Lee, Byung-Woo
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.109-114
    • /
    • 2013
  • In this study, the microstructure, mechanical properties and high temperature oxidation characteristics of HiSiMo and HiSiMoM ductile iron for exhaust manifold were investigated. The HiSiMoM ductile iron was developed by optimization of alloying element addition and casting design. The exhaust manifold prototype was fabricated using the HiSiMoM iron and this resulted in the weight saving of 0.73kg. The microstructures of the HiSiMo and HiSiMoM irons were similar each other and graphite nodularity was 89% and 93% respectively. Tensile strengths of them were 663.5 and 674.4 MPa and Brinell hardness were 235.3 and 243.9 respectively. Both irons showed parabolic weight gain behavior in high temperature oxidation atmosphere. Oxidation layer was divided into external and internal layers. The weight gain of the HiSiMoM iron was lower than that of the HiSiMo iron after isothermal oxidation test at $900^{\circ}C$. This should be rationalized by higher Si enrichment at the interface of the matrix and internal layer of the HiSiMoM iron.

Spalling of the Oxide Scales Foemed on Stainless Steels During Cooling

  • Saeki, Isao;Ogama, Tetsuro;Furuichi, Ryusaburo;Kikkawa, Shinichi
    • Corrosion Science and Technology
    • /
    • v.2 no.5
    • /
    • pp.225-232
    • /
    • 2003
  • High temperature oxidation of SUS430 and SUS304 stainless steels in 16.7 kPa $O_2$ - 20.3 kPa $H_2O$ - balanced N2 atmosphere at 1273 K was studied focused on the scale spalling during cooling after an isothermal oxidation. Spalling of the oxide scale during cooling occurred only for SUS304 stainless steel. The oxide scale was composed of two layers and they detached at the interface between them. The reason for the spalling could not be explained only by thermal stresses applied to the specimen during heating and cooling. A new mechanism for scale spalling was proposed based on combination of thermal stresses and thermal shock caused by a fast Martensite transformation of substrate metal.

Three Dimensional Adaptive Mesh Generator for Thermal Oxidation Simulation (열산화 공정 시뮬레이션을 위한 3차원 적응 메쉬 생성기 제작에 관한 연구)

  • 윤상호;이제희;윤광섭;원태영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.48-51
    • /
    • 1995
  • We have developed the three dimensional mesh generator for three dimensional process simulation using the FEM(Finite Element Method). Tetrahedron element construct the presented three dimensional mesh, which is suitable for the simulation of three dimensional behavior of the LOCOS. The simulation of thermal oxidation is one of the problem in scale downed semiconductor processes. As three dimensional simulators use the huge size of the memory, we use the efficient method that generates the new nodes inside the growing oxide and removes the nodes nearby the SiO2/Si interface in silicon. The resented three dimensional mesh generator was designed to be used in various process simulations, for instance thermal oxidation, silicidation, nitridation, ion implantation, diffusion, and so on.

  • PDF

A Study on the Nucleation, Growth and Shrinkage of Oxidation Induced Stacking Faults (OSF) -Part2: Role of $SiO_2$ Layer on the Shrinkage of Oxidation Induced Stacking Faults (OSF) in P-type CZ Silicon (산화 적층 결합의 생성, 성장 및 소멸에 관한 연구-제2부 : P형 CZ 실리콘에서 산화 적층 결함의 소멸에 미치는 $SiO_2$층의 역학)

  • 김용태;민석기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.7
    • /
    • pp.767-773
    • /
    • 1988
  • We have proposed a new simple and easy method for the observation of OSF growth and shrinkage. This method is to observe the behavior of OSF in thedamaged region during oxidation as well as annealing process after introducing mechanical damage on the silicon surface by pressure-controllable indentor. The effect of SiO2 layer on the shrinkage of pregrown OSF generated by the proposed method has been investigated using the samples with or without SiO2 layer. From the experimental data, we suggest a model for the shrinkage of OSF, which is based on the recombinaiton mechanism between silicon interstitial and vacancy at the Si-SiO2 interface.

  • PDF

Fabrication and characterization of SILO isolation structure (SILO 구조의 제작 방법과 소자 분리 특성)

  • Choi, Soo-Han;Jang, Tae-Kyong;Kim, Byeong-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.328-331
    • /
    • 1988
  • Sealed Interface Local Oxidation (SILO) technology has been investigated using a nitride/oxide/nitride three-layered sandwich structure. P-type silicon substrate was either nitrided by rapid thermal processing, or silicon nitride was deposited by LPCVD method. A three-layered sandwich structure was patterned either by reactive ion etch (RIE) mode or by plasma mode. Sacrificial oxidation conditions were also varied. Physical characterization such as cross-section analysis of field oxide, and electrical characterization such as gate oxide integrity, junction leakage and transistor behavior were carried out. It was found that bird's beak was nearly zero or below 0.1um, and the junction leakages in plasma mode were low compared to devices of the same geometry patterned in RIE mode, and gate oxide integrity and transistor behavior were comparable. Conclusively, SILO process is compatible with conventional local oxidation process.

  • PDF

The study on the thickness change of tantalum oxide as voltage drop in electrolyte

  • Hur, Chang-Wu;Lee, Kyu-Chung
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.453-456
    • /
    • 2010
  • Tantalum oxide ($Ta_2O_5$) films are of considerable interest for a range of application, including optical waveguide devices, high temperature resistors, and oxygen sensors. In this paper, we establish an anode oxidation process of tantalum thin film. The voltage drop in the electrolyte is affected not in voltage change but in current change. If the voltage drop in the electrolyte is same with cathode oxidation voltage, the current changes logarithmically in proportion to the voltage drop in interface of tantalum oxide and electrolyte. As a result of the measurement on the electrical property of tantalum oxide thin film, when the thickness of the insulator film is $1500{\AA}$, the breakdown voltage is 350volts and dielectric constant is 29.

Stability and Electrochemical Characteristics of Polyaniline Salt Films in 1 N HCl Solution

  • 조정환;오응주;요철현
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.8
    • /
    • pp.715-719
    • /
    • 1996
  • Thin films of polyaniline (PANI) salts were in situ deposited on a Pt plate during either chemical polymerization or electrochemical polymerization. The oxidation states of the salt films were controlled by the applied DC potential. AC impedance of the Pt/PANI electrode were measured in monomer-free 1 N HCl solution in order to investigate the electrodic properties of the films at the following applied DC potentials: 0, 0.45 and 0.75 V vs. SCE. Very small differences in film conductivity according to its oxidation state were observed by analysis of the impedance spectra, the reasons of which are complicated by enriched water content in the film and possible decrease in the film thickness during the measurements. The electrochemical activity of the film/solution interface varied with its oxidation state. Stability of the film in 1 N HCl solution was also evaluated by impedance and cyclic voltammetry measurements.