• Title/Summary/Keyword: interface friction tests

Search Result 128, Processing Time 0.02 seconds

Development and Application of Cone Penetrometer with Impact Penetration Rod for Evaluation of Track Substructure (철도궤도 하부구조물 평가를 위한 타격식 관입 롯드가 체결된 콘 관입기의 개발 및 적용)

  • Hong, Wontaek;Byun, Yonghoon;Kim, Sangyeob;Choi, Chanyong;Lee, Jongsub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.2
    • /
    • pp.45-52
    • /
    • 2015
  • To minimize the cost of maintenance, repair and over-design of track substructure, an accurate evaluation of strength and stiffness of the track substructure is necessary. In this study, a cone penetrometer with impact penetration rod (CPI) is developed for the evaluation of track substructure. For applicability test, the chamber and field tests were performed. As the experimental results of the CPI, dynamic cone penetration endex (DCPI), cone tip resistance ($q_c$), friction resistance ($f_s$) and friction ratio (Fr) were obtained. In the chamber test, the experimental results show reasonable values for the simulated track substructure. In the field test, the CPI clearly detects the interface between the ballast and the subgrade. Also, discontinuous layers are detected in the subgrade. It is expected that the developed CPI may be an effective tool for the evaluation of track substructure by evaluating the ballast layer by dynamic penetration and the subgrade by static penetration of the inner rod.

Friction and Wear Behavior of Ultra-Thin TiN Film during Sliding Wear against Alumina and Hardened Steel (마모 상대재 변화에 따른 TiN 극박막의 마찰 및 마모거동)

  • Song, Myeong-Hun;Lee, Jae-Gap;Kim, Yong-Seok
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.62-68
    • /
    • 2000
  • Ultra thin TiN films (50∼700nm thickness) were deposited on AISI 304 stainless steel substrates using a reactive DC magnetron sputtering deposition process to investigate their wear and friction properties. Dry sliding wear tests of the films were carried out against hardened steel and alumina counterparts using a pin-on-disk type wear tester at room temperature. Variation of friction coefficient was measured as a function of film thickness, load, sliding speed and roughness of the substrate. Worn surfaces of the film were examined by a scanning electron microscope. Wear resistance of the TiN film increased with the increase of the film thickness. The TiN film showed relatively high wear resistance in spite of its ultra thin thickness when it is mated by the steel counterpart, while it showed poor wear resistance with the alumina counterpart. The good wear resistance with the steel counterpart was explained by the formation of oxide layers on the film surface and sound interface character between the ultra thin film and the substrate.

  • PDF

Slant Shear Test for Determining the Interfacial Shear Strength of Concrete Strengthened with Ultra-High Performance Fiber Reinforced Concrete (초고성능 섬유보강 콘크리트로 보강된 콘크리트의 계면 전단강도 결정을 위한 경사전단 실험)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.637-646
    • /
    • 2016
  • In this study, slant shear tests for the prism specimens strengthened with ultra-high performance fiber reinforced concrete (UHPFRC), normal- and high-strength concrete were performed to evaluate the interfacial shear strength between old and new concrete substrate. Test parameters are the roughness of surface, concrete strength, and fiber volume fraction of UHPFRC. The surface of the concrete was roughened by shot blasting. Test results showed that the adhesion bond resistance of the specimen with a roughened surface was very large compared to that of the specimen with a smooth surface. In addition, the interfacial shear strength appeared to be affected by the concrete strength rather than the fiber volume fraction. For the roughened surface by shot-blasting method, interfacial shear resistance exceeded the upper limit which is presented in current design codes even if the shear-friction reinforcements are not provided. Based on the test results, it is applicable to use the current concrete design codes to achieve the shear-friction design for the interface between conventional concrete and UHPFRC. However, for the surface which is not processed, it would be appropriate to provide additional shear-friction reinforcement.

The Organization of Interface for safety and reliability of Urban Maglev Third rail System (도시형 자기부상열차 제3궤조 전차선로의 안전성 및 신뢰성 확보를 위한 인터페이스 정립)

  • Min, Byong-Chan;Cho, Sang-Hoon;Heo, Young-Tae;Hong, Du-Young;Kim, Chang-Hwan;Jeong, Nam-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1189-1194
    • /
    • 2011
  • The Maglev train is operated by levitating from a power of a large number of magnets and moving without direct contact to railway track so that reduces noise and vibration due to mechanical friction. Also, the Maglev passes sharp curves and steep hill without any difficulties. The Maglev has a potential to be an alternative transport system urban areas. For successful commercializing of Maglev, the organization of interface for safety and reliability of third rail system are one of the key considerations. Especially, the components of the third rail system, such as power rail, expansion joints, FRP section insulator, and supporter with epoxy insulator, should be durable, convenient for construction, and easy to maintenance. This paper analyzes the characteristics of the third rail system components and proposes organization of interface for system engineering. The operating tests of KIMM for the proposed third rail system verify the safety. Also, this paper analyzes the life cycle of the system components to improve the system reliability and evaluation.

  • PDF

A Study on the Energy Absorption Characteristics and Fracture Mode of CFRP Laminate Members under Axial Compression (축압축을 받는 CFRP 적층부재의 에너지흡수특성과 파괴모드에 관한 연구)

  • 김정호;정회범;전형주
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.7-12
    • /
    • 2002
  • The object of this paper is to investigate collapse characteristics of CF/Epoxy(Carbon Fiber/Epoxy resin) composite tubes on the change of interlaminar number and fiber orientation angle of outer and to evaluate reappearance of collapse characteristics on the change of tension strength of fibers under static and impact axial compression loads. When a CF/Epoxy composite tube is mushed, static/impact energy is consumed by friction between the loading plate and the splayed fiends of the tube, by fracture of the fibers, matrix and their interface. In general, CF/Epoxy tube with 6 interlaminar number(C-type) absorbed more energy than other tubes(A, B, D-types). The maximum collapse load seemed to increase as the interlaminar number of such tubes increases. The collapse mode depended upon orientation angle of outer of CF/Epoxy tubes and loading status(static/impact). Typical collapse modes of CF/Epoxy tubes are wedge collapse mode, splaying collapse mode and fragmentation collapse mode. The wedge collapse mode was shorn in case of CF/Epoxy tubes with 0$^{\circ}$ orientation angle of outer under static and impact loadings. The splaying collapse mode was shown in only case of CF/Epoxy tubes with 90$^{\circ}$ orientation angie or outer under static loadings, however in impact tests those were collapsed in fragmentation mode. So that CF/Epoxy tube with 6 interlaminar number and 90$^{\circ}$ outer orientation angle presented to the optimal collapse characteristics.

A Shear Bond Chracteristics of Composite Slab with Closed-Shape Deckplate (폐쇄형 데크플레이트를 사용한 합성슬래브의 전단부착 특성에 관한 연구)

  • Ju, Gi Su;Park, Sung Moo
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.557-566
    • /
    • 2001
  • Composite slab with deckplate needs sufficient bond strength between deckplate and concrete to conduct composite behavior Composite slab can transfer the shear by either chemical adhesion interface interlock, or active friction. There are several way of mechanical shear connection in composite slab. that is embossments shear connector shape of deckplate etc. Effect of mechanical interaction is deped on shape of deckplate which is to prevent peeling between deckplate and concrete and an amount of shear connector. The behavior and strength of the connection between the decking and the concrete slab due to embossments and end anchorage may be estimated using the push-off tests described in this paper We proposed the equation of shear bond strength in the composite slab It will be use to design by basic data in composite slab.

  • PDF

Axial Load Capacity Prediction of Single Piles in Clay and Sand Layers Using Nonlinear Load Transfer Curves (비선형 하중전이법에 의한 점토 및 모래층에서 파일의 지지력 예측)

  • Kim, Hyeongjoo;Mission, Joseleo;Song, Youngsun;Ban, Jaehong;Baeg, Pilsoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.45-52
    • /
    • 2008
  • The present study has extended OpenSees, which is an open-source software framework DOS program for developing applications to idealize geotechnical and structural problems, for the static analysis of axial load capacity and settlement of single piles in MS Windows environment. The Windows version of OpenSees as improved by this study has enhanced the DOS version from a general purpose software program to a special purpose program for driven and bored pile analysis with additional features of pre-processing and post-processing and a user friendly graphical interface. The method used in the load capacity analysis is the numerical methods based on load transfer functions combined with finite elements. The use of empirical nonlinear T-z and Q-z load transfer curves to model soil-pile interaction in skin friction and end bearing, respectively, has been shown to capture the nonlinear soil-pile response under settlement due to load. Validation studies have shown the static load capacity and settlement predictions implemented in this study are in fair agreement with reference data from the static loading tests.

  • PDF

Analysis on Seismic Resistance Capacity of Hollow Concrete Block Reinforced Foundation Ground by Using Shaking Table Test (진동대 시험을 이용한 중공블록 보강 기초의 내진성능분석)

  • Shin, Eun-Chul;Lee, Yeun-Jeung;Yang, Tae Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.85-93
    • /
    • 2021
  • The seventy percentage of Korean Peninsular is covered by the mountainous area, and the depth of west sea and south sea is relatively shallow. Therefore, a large scale land reclamation from the sea has been implemented for the construction of industrial complex, residental area, and port and airport facilities. The common problem of reclaimed land is consisted of soft ground, and hence it has low load bearing capacity as well as excessive settlement upon loading on the ground surface. The hollow concrete block has been used to reinforce the loose and soft foundation soil where the medium-high apartment or one-story industrial building is being planned to be built. Recently the earthquakes with the magnitude of 4.0~5.0 have been occurred in the west coastal and southeast coastal areas. Lee (2019) reported the advantages of hollow concrete block reinforced shallow foundation through the static laboratory bearing capacity tests. In this study, the dynamic behavior of hollow concrete block reinforced sandy ground with filling the crushed stone in the hollow space has been investigated by the means of shaking table test with the size of shaking table 1000 mm × 1000 mm. Three types of seismic wave, that is, Ofunato, Hachinohe, Artificial, and two different accelerations (0.154 g, 0.22 g) were applied in the shaking table tests. The horizontal displacement of structure which is situated right above the hollow concrete block reinforced ground was measured by using the LVDT. The relative density of soil ground are varied with 45%, 65%, and 85%, respectively, to investigate the effectiveness of reinforcement by hollow block and measured the magnitude of lateral movement, and compared with the limit value of 0.015h (Building Earthquake Code, 2019). Based on the results of shaking table test for hollow concrete block reinforced sandy ground, honeycell type hollow block gives a large interlocking force due to the filling of crushed stone in the hollow space as well as a great interface friction force by the confining pressure and punching resistance along the inside and outside of hollow concrete block. All these factors are contributed to reduce the great amount of horizontal displacement during the shaking table test. Finally, hollow concrete block reinforced sandy ground for shallow foundation is provided an outstanding reinforced method for medium-high building irrespective of seismic wave and moderate accelerations.