• Title/Summary/Keyword: interface delamination

Search Result 138, Processing Time 0.022 seconds

Evaluation of Mode I Interlaminar Fracture Toughness for Carbon Fabric/Expocy Composite for Tilting Train Carbody (틸팅열차 차체용 탄소섬유직물/에폭시 복합재의 모우드 I 층간파괴인성 평가)

  • Heo KWang-Su;Kim Jeong-Seok;Yoon Sung-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.573-580
    • /
    • 2005
  • Model I interlaminar fracture behaviors of the carbon/epoxy composite, one of the candidate composites for a tilting train carbody, were investigate by the use of DCB(Double cantilever beam) specimens. These specimens were made of CF3327 plain woven fabric with epoxy resin, and an artificial starter delamination was fabricated by inserting Teflon film with the thickness of $12.5{\mu}m$ of $25.0{\mu}m$ at the one end of the specimen. Mode I interlaminar fracture toughness was evaluated for the specimens with the different thickness of an inserter. Also delamination propagating behaviors and interlaminar fracture surface were examined through an ooptical travelling scope and a scanning electron microscope. We found that abruptly unstable crack propagation called as stick-slip phenomena was observed. In addition, interlaminar fracture behaviors were affected on the location and the morphology of a crack tip as well as an interface region.

Scanning acoustic microscopy for material evaluation

  • Hyunung Yu
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.25.1-25.11
    • /
    • 2020
  • Scanning acoustic microscopy (SAM) or Acoustic Micro Imaging (AMI) is a powerful, non-destructive technique that can detect hidden defects in elastic and biological samples as well as non-transparent hard materials. By monitoring the internal features of a sample in three-dimensional integration, this technique can efficiently find physical defects such as cracks, voids, and delamination with high sensitivity. In recent years, advanced techniques such as ultrasound impedance microscopy, ultrasound speed microscopy, and scanning acoustic gigahertz microscopy have been developed for applications in industries and in the medical field to provide additional information on the internal stress, viscoelastic, and anisotropic, or nonlinear properties. X-ray, magnetic resonance, and infrared techniques are the other competitive and widely used methods. However, they have their own advantages and limitations owing to their inherent properties such as different light sources and sensors. This paper provides an overview of the principle of SAM and presents a few results to demonstrate the applications of modern acoustic imaging technology. A variety of inspection modes, such as vertical, horizontal, and diagonal cross-sections have been presented by employing the focus pathway and image reconstruction algorithm. Images have been reconstructed from the reflected echoes resulting from the change in the acoustic impedance at the interface of the material layers or defects. The results described in this paper indicate that the novel acoustic technology can expand the scope of SAM as a versatile diagnostic tool requiring less time and having a high efficiency.

Evaluation of Free-Edge Delamination in Composite Laminates (복합재 적층판의 자유단 층간분리의 평가)

  • 김인권;공창덕;방조혁
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2001
  • A simplified method for determining the three mode(I, II, III) components of the strain energy release rate of free-edge delaminations in composite laminates is proposed. The interlaminar stresses are evaluated using the interface moment and the interface shear forces which are obtained from the equilibrium equations at the interface between the adjacent layers. Deformation of an edge-delaminated laminate is analysed by using a generalized quasi-three dimensional classical laminated plate theory. The analysis provides closed-form expression for the three components of the strain energy release rate. The analyses are performed for composite laminates subjected to uniaxial tension, with free-edge delaminations located symmetrically and asymmetrically with respect to the laminate midplane. The analysis results agreed with a finite element solution using the virtual crack closure technique.

  • PDF

Effects of Annealing Temperature on Interface Properties for Al/Mild Steel Clad Materials (어닐링 온도 변화가 Al/연강 클래드재의 계면 특성에 미치는 영향)

  • Jeong, Eun-Wook;Kim, Hoi-Bong;Kim, Dong-Yong;Kim, Min-Jung;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.591-597
    • /
    • 2012
  • For heat exchanger applications, 2-ply clad materials were fabricated by rolling of aluminum (Al) and mild steel sheets. Effects of annealing temperature on interface properties, especially on inter-layer formation and softening of strain hardened mild-steel, for Al/mild steel clad materials, were investigated. To obtain optimum annealing conditions for the Al/mild steel clad materials, annealing temperature was varied from room temperature to $600^{\circ}C$. At the annealing temperature about $450^{\circ}C$, an inter-layer was formed in an island-shape at the interface of the Al/mild steel clad materials; this island expanded along the interface at higher temperature. By analyzing the X-ray diffraction (XRD) peaks and the energy dispersive X-ray spectroscopy (EDX) results, it was determined that the exact chemical stoichiometry for the inter-layer was that of $Fe_2Al_5$. In some samples, an X-layer was formed between the Al and the inter-layer of $Fe_2Al_5$ at high annealing temperature of around $550^{\circ}C$. The existence of an X-layer enhanced the growth of the inter-layer, which resulted in the delamination of the Al/mild-steel clad materials. Hardness tests were also performed to examine the influence of the annealing temperature on the cold deformability, which is a very important property for the deep drawing process of clad materials. The hardness value of mild steel gradually decreased with increasing annealing temperature. Especially, the value of hardness sharply decreased in the temperature range between $525^{\circ}C$ and $550^{\circ}C$. From these results, we can conclude that the optimum annealing temperature is around $550^{\circ}C$ under condition of there being no X-layer creation.

A Study on the Bonding Residual Thermal Stress Analysis of Dissimilar Materials Using Boundary Element Method (경계요소법에 의한 이종재료 접합 잔류열응력의 해석)

  • Yi, Won;Yu, Yeong-Chul;Jeong, Eui-Seob;Yun, In-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.4
    • /
    • pp.540-548
    • /
    • 1996
  • In general residual stress is measured by X-ray diffraction method but in case of bonding residual thermal stress it is inadequate technique to examine the stress singularity. Therefore Two-dimensional elastic boundary element analyses were carried out to investigate the residual thermal stress and stress singularity of bonding interface in Al/Epoxy. This boundary element results were compared with the strain gauge measurements. The effects of different interface models, sub-element and adherend thickness are presented and discussed. On the basis of the obtained results, interface delamination causing by normal stress is expected and stress singularity is observed more intensively increasing with adherend thickness. It is concluded that the bonding strength of Al/Epoxy interface can be estimated correctly by taking into account the stress singularity at the edge of the interface.

  • PDF

Thermomechanical Analysis of Functionally Gradient $Al-SiC_p$ Composite for Electronic Packaging (전자패키지용 경사조성 $Al-SiC_p$복합재료의 열.기계적 변형특성 해석)

  • 송대현;최낙봉;김애정;조경목;박익민
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.23-29
    • /
    • 2000
  • The internal residual stresses within the multilayered structure with sharp interface induced by the difference in thermal expansion coefficient between the materials of adjacent layers often provide the source of failure such as delamination of interfaces etc. Recent development of the multilayered structure with functionally graded interface would be the solution to prevent this kind of failure. However a systematic thermo-mechanical analysis is needed for the customized structural design of multilayered structure. In this study, theoretical model for the thermo-mechanical analysis is developed for multilayered structures of the $Al-SiC_p$ functionally graded composite for electronic packaging. The evolution of curvature and internal stresses in response to temperature variations is presented for the different combinations of geometry. The resultant analytical solutions are used for the optimal design of the multilayered structures with functionally graded interface as well as with sharp interface.

  • PDF

Understanding Interfacial Charge Transfer Nonlinearly Boosted by Localized States Coupling in Organic Transistors (유기트랜지스터 내부 편재화 준위간 커플링에 의한 계면 전하이동의 비선형적 가속화 현상의 이해)

  • Han, Songyeon;Kim, Soojin;Choi, Hyun Ho
    • Journal of Adhesion and Interface
    • /
    • v.22 no.4
    • /
    • pp.144-152
    • /
    • 2021
  • Understanding charge transfer across the interface between organic semiconductor and gate insulator gives insight into the development of high-performance organic memory as well as highly stable organic field-effect transistors (OFETs). In this work, we firstly unveil a novel interfacial charge transfer mechanism, in which hole transfer from organic semiconductor to polymer insulator was nonlinearly boosted by localized states coupling. For this, OFETs based on rubrene single crystal semiconductor and Mylar gate insulator were fabricated via vacuum lamination, which allows stable repetition of lamination and delamination between semiconductor and gate insulator. The surfaces of rubrene single crystal and Mylar film were selectively degraded by photo-induced oxygen diffusion and UV-ozone treatment, respectively. Consequently, we found that the interfacial charge transfer and resultant bias-stress effect were nonlinearly boosted by coupling between localized states in rubrene and Mylar. In particular, the small number of localized states in rubrene single crystal provided fluent pathway for interfacial charge transport.

A Molecular Simulation on the Adhesion Control of Metal Thin Film-Carbon Nanotube Interface based on Thermal Wetting (Thermal wetting 현상이 탄소나노튜브-금속박막 계면의 응착력에 미치는 영향에 관한 분자 시뮬레이션 연구)

  • Sang-Hoon Lee;Hyun-Joon Kim
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.8-12
    • /
    • 2023
  • This study presents a molecular simulation of adhesion control between carbon nanotube (CNT) and Ag thin film deposited on silicon substrate. Rough and flat Ag thin film models were prepared to investigate the effect of surface roughness on adhesion force. Heat treatment was applied to the models to modify the adhesion characteristics of the Ag/CNT interface based on thermal wetting. Simulation results showed that the heat treatment altered the Ag thin film morphology by thermal wetting, causing an increase in contact area of Ag/CNT interface and the adhesion force for both the flat and rough models changed. Despite the increase in contact area, the adhesion force of flat Ag/CNT interface decreased after the heat treatment because of plastic deformation of the Ag thin film. The result suggests that internal stress of the CNT induced by the substrate deformation contributes in reduction of adhesion. Contrarily, heat treatment to the rough model increases adhesion force because of the expanded contact area. The contact area is speculated to be more influential to the adhesion force rather than the internal stress of the CNT on the rough Ag thin film, because the CNT on the rough model contains internal stress regardless of the heat treatment. Therefore, as demonstrated by simulation results, the heat treatment can prevent delamination or wear of CNT coating on a rough metallic substrate by thermal wetting phenomena.

CFRP Drilling Experiments: Investigation on Defect Behaviors and Material Interface Detection for Minimizing Delamination (탄소섬유복합재 가공의 결함특성 및 결함 저감을 위한 경계검출)

  • Kim, Gyuho;Ha, Tae In;Lee, Chan-Young;Ahn, Jae Hoon;Kim, Joo-Yeong;Min, Byung-Kwon;Kim, Tae-Gon;Lee, Seok-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.6
    • /
    • pp.453-458
    • /
    • 2016
  • CFRP (Carbon Fiber Reinforced Plastic) and CFRP-metal stacks have recently been widely used in the aerospace and automobile industries. When CFRP is machined by a brittle fracture mechanism, defect generation behaviors are different from those associated with metal cutting. The machining quality is strongly dependent on the properties of CFRP materials. Therefore, process control for CFRP machining is necessary to minimize the defects of differently manufactured CFRPs. In this study, defects in drilling of CFRP substrates with a variety of fiber directions and resin types are compared with respect to thrust force. An experimental study on material interface detection is carried out to investigate its benefits in process control.

Theoretical Analysis of Interface Crack on Thin Plate (얇은 접합층의 계면균열에 대한 이론적 해석)

  • Nho, Hwan-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.627-634
    • /
    • 2007
  • A bonded plate or a coated part can be debonded by external impact or thermal expansion. To analyse adhesive strength, the blister test is generally adopted. In this paper, a blister test is modelled theoretically and then the stability and bifurcation of the blister are studied under several different cases. The blister is simplified to consist of a pure bending plate attached elastically to the rigid substrate. Expression of the energy release rate is obtained as a form of an explicit function for a circular-type blister or tunnel-type blister grown by controlling the internal pressure or internal volume. Stability and bifurcation are also studied in the frame of the quasi-static evolution. The study shows that the circular- type blister propagates with the first mode of bifurcation and that the tunnel-type blister propagates with a regular wave. It is proved that the waves have the same form on two side lines of the tunnel and that the wave length can be obtained. When the internal pressure is controlled, the blister is unstable, but when the internal volume is controlled, it is stable.