• Title/Summary/Keyword: interface crack

Search Result 518, Processing Time 0.026 seconds

A Study on Determination of Stress Intensity Factors for the Interface Crack in Dissimilar AnisotropicMaterials (이방성 이종재료의 접합계면 균열에 대한 응력확대계수 결정에 대한 연구)

  • 이갑래;조상봉;최용식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.887-897
    • /
    • 1991
  • 본 연구에서는 이와 같은 배경에서, Fig. 1(f)와 같이 가장 일반적인 이방성 재료가 접합된 경우의 응력확대계수를 명확히 정의하고, 수치해석법으로 구할 수 있는 외삽식을 제안한다. 또한, 탄성문제의 수치해석 방법으로 적은 요소의 분할로써 고 정밀도의 수치해석 결과를 얻을 수 있는 경계요소법(boundary element method:BEM), 특히 저자들이 개발한 복합재료에 대한 2차원 경계요소법 프로그램을 이용하여 이방성 이종재료 접합계면 균열의 응력확대계수를 해석하고, 복합재료내의 섬유방향에 대한 접합계면 균열의 정성적 거동을 고찰하고자 한다.

Characteristics of Fatigue Crack Initiation and Fatigue Strength of Nitrided 1 Cr- 1Mo-0.25V Turbine Rotor Steels

  • Suh, Chang-Min;Hwang, Byung-Won;Murakami, Ri-Ichi
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1109-1116
    • /
    • 2002
  • To investigate the effect of nitriding layer on both fatigue crack initiation and fatigue life, turbine rotor steel ( IC.- 1Mo-0.25V steel) specimens were nitrided by the nitemper method and then put to a rotary bending fatigue test at room and elevated temperatures. In nitriding, temperature and time were controlled to obtain a different nitrided thickness. Microstructure analysis, micro-Victors hardness test, and scanning electron microscope observation were carried out for evaluating experiments. In results, the fatigue cracks of nitrided specimens were initiated at inclusion near the interface between nitrided layer and substrate, which showed fish-eye type appearance in fractograph. The fatigue life of nitrided specimens at every temperature was prolonged compared to that of the non-nitrided. However, there was not observable improvement in fatigue characteristics with the increase of a nitrided thickness.

A Study on the Near-Field Stresses and Displacement of a Stationary Interfacial Crack in Two Dissimilar Isotropic Bimaterials (두 상이한 등방성 이종재료 정지계면균열의 선단 응력장과 변위장에 관한 연구)

  • Shin, Dong-Chul;Hawong, Jai-Sug;Nam, Jeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1897-1905
    • /
    • 2004
  • In many part of machines or structures that made of bimaterial bonded with two dissimilar materials, most failures occur at their interface. Therefore, the accurate analysis of fracture characteristics and the evaluation of mechanical strength for interfacial crack are essential when we design those structures. In this research, stress and displacement components in the vicinity of stationary interfacial crack tip in the two dissimilar isotropic bimaterials are established. Hereafter, the stress components established in this research can be applied to the photoelastic hybrid method which can be used to analyze the fracture behavior of the two dissimilar isotropic bimaterials.

A Study on the Delamination Growth in Composite Laminates Subjected to Low-Velocity Impact (저속 충격을 받는 복합 재료 적층판의 층간 분리 성장에 관한 연구)

  • 장창두;송하철;김호경;허기선;정종진
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.55-59
    • /
    • 2002
  • Delamination means that cracking occurs on the interface layer between composite laminates. In this paper, to predict the delamination growth in composite laminates subjected to low-velocity impact, the unit load method was introduced, and an eighteen-node 3-D finite element analysis, based on assumed strain mixed formulation, was conducted. Strain energy release rate, necessary to determine the delamination growth, was calculated by using the virtual crack closure technique. The unit load method saves the computation time more than the re-meshing method. The virtual crack closure technique enables the strain energy release rate to be easily calculated, because information of the singular stress field near the crack tip is not required. Hence, the delamination growth in composite laminates that are subjected to low-velocity impact can be efficiently predicted using the above-mentioned methods.

Validation of 3D crack propagation in plain concrete -Part II: Computational modeling and predictions of the PCT3D test

  • Gasser, T.Christian
    • Computers and Concrete
    • /
    • v.4 no.1
    • /
    • pp.67-82
    • /
    • 2007
  • The discrete crack-concept is applied to study the 3D propagation of tensile-dominated failure in plain concrete. To this end the Partition of Unity Finite Element Method (PUFEM) is utilized and the strong discontinuity approach is followed. A consistent linearized implementation of the PUFEM is combined with a predictor-corrector algorithm to track the crack path, which leads to a robust numerical description of concrete cracking. The proposed concept is applied to study concrete failure during the PCT3D test and the predicted numerical results are compared to experimental data. The proposed numerical concept provides a clear interface for constitutive models and allows an investigation of their impact on concrete cracking under 3D conditions, which is of significant scientific interests to interpret results from 3D experiments.

A 2-D four-noded finite element containing a singularity of order λ

  • Abdel Wahab, M.M.;de Roeck, G.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.4
    • /
    • pp.383-390
    • /
    • 1995
  • A 2-D four-noded finite element which contains a ${\lambda}$ singularity is developed. The new element is compatible with quadratic standard isoparametric elements. The element is tested on two different examples. In the first example, an edge crack problem is analyzed using two different meshes and different integration orders. The second example is a crack perpendicular to the interface problem which is solved for different material properties and in turn different singularity order ${\lambda}$. The results of those examples illustrate the efficiency of the proposed element.

Application of Boundary Element Methods to Interface Crack Problems (I) : Elastic-Elastic Problem (계면균열해석에 대한 경계요소법의 응용 (I) : 탄성-탄성 문제)

  • 이상순;김정규;김태형;박건우;황종근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.87-94
    • /
    • 1996
  • The stress intensity factor for an inter(ace crack in dissimilar elastic-elastic bimaterials is presented and the boundary element analysis is performed. It is shown that the proposed method produces the accurate and effective numerical results.

  • PDF