• Title/Summary/Keyword: interface charge

Search Result 470, Processing Time 0.035 seconds

A Molecular Dynamics Study of the Stress Effect on Oxidation Behavior of Silicon Nanowires

  • Kim, Byeong-Hyeon;Kim, Gyu-Bong;Park, Mi-Na;Ma, U-Ru-Di;Lee, Gwang-Ryeol;Jeong, Yong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.499-499
    • /
    • 2011
  • Silicon nanowires (Si NWs) have been extensively studied for nanoelectronics owing to their unique optical and electrical properties different from those of bulk silicon. For the development of Si NW devices, better understanding of oxidation behavior in Si NWs would be an important issue. For example, it is widely known that atomic scale roughness at the dielectric (SiOx)/channel (Si) interface can significantly affect the device performance in the nano-scale devices. However, the oxidation process at the atomic-scale is still unknown because of its complexity. In the present work, we investigated the oxidation behavior of Si NW in atomic scale by simulating the dry oxidation process using a reactive molecular dynamics simulation technique. We focused on the residual stress evolution during oxidation to understand the stress effect on oxidation behavior of Si NWs having two different diameters, 5 nm and 10 nm. We calculated the charge distribution according to the oxidation time for 5 and 10 nm Si NWs. Judging from this data, it was observed that the surface oxide layer started to form before it is fully oxidized, i.e., the active diffusion of oxygen in the surface oxide layer. However, it is well-known that the oxide layer formation on the Si NWs results in a compressive stress on the surface which may retard the oxygen diffusion. We focused on the stress evolution of Si NWs during the oxidation process. Since the surface oxidation results in the volume expansion of the outer shell, it shows a compressive stress along the oxide layer. Interestingly, the stress for the 10 nm Si NW exhibits larger compressive stress than that of 5 nm Si NW. The difference of stress level between 5 an 10 anm Si NWs is approximately 1 or 2 GPa. Consequently, the diameter of Si NWs could be a significant factor to determine the self-limiting oxidation behavior of Si NWs when the diameter was very small.

  • PDF

Implementation of a Display and Analysis Program to improve the Utilization of Radar Rainfall (레이더강우 자료 활용 증진을 위한 표출 및 분석 프로그램 구현)

  • Noh, Hui-Seong
    • Journal of Digital Contents Society
    • /
    • v.19 no.7
    • /
    • pp.1333-1339
    • /
    • 2018
  • Recently, as disasters caused by weather such as heavy rains have increased, interests in forecasting weather and disasters using radars have been increasing, and related studies have also been actively performed. As the Ministry of Environment(ME) has established and operated a radar network on a national scale, utilization of radars has been emphasized. However, persons in charge and researchers, who want to use the data from radars need to understand characteristics of the radar data and are also experiencing a lot of trials and errors when converting and calibrating the radar data from Universal Format(UF) files. Hence, this study developed a Radar Display and Analysis Program(RaDAP) based on Graphic User Interface(GUI) using the Java Programming Language in order for UF-type radar data to be generated in an ASCII-formatted image file and text file. The developed program can derive desired radar rainfall data and minimize the time required to perform its analysis. Therefore, it is expected that this program will contribute to enhancing the utilization of radar data in various fields.

Drivers' Dynamic Route Choice Mechanism Analysis under ATIS Environment Using WATiSim (WATiSim을 활용한 운전자의 실시간 경로선택 분석)

  • Lee Chungwon;Kwon Byungchul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.1 no.1
    • /
    • pp.52-57
    • /
    • 2002
  • A simulation tool for an optimal ATIS design and drivers' dynamic route choice behavior analysis is developed, which is applicable to urban networks. Due to the difficulty to make drivers feel the time pressure according to traffic conditions, current SP questionnaire survey type surveys have a limitation to capture correct driver reactions to real-time traffic Information provision. The simulator Is a web-based upgraded version, named WATiSim (Web-based ATIS Simulator), to quickly perform a wide population survey with a minimal cost using INTERNET Furthermore, the time pressure issue is lessened by its interface and simulation modules. After WATiSim mimicked a VMS based ATIS in a partial network of Seoul Metropolitan, reactions of drivers to various traffic conditions were surveyed through INTERNET and analyzed using a logit model. Drivers under the ATIS environment clearly understood the provided traffic information, and their reactions were closely related to traffic conditions, scheduled delay, trip purposes as well as toll charge if any.

  • PDF

Model Based Hardware In the Loop Simulation of Thermal Management System for Performance Analysis of Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지 특성 해석을 위한 열관리 계통 모델 기반 HILS 기초 연구)

  • Yun, Jin-Won;Han, Jae-Young;Kim, Kyung-Taek;Yu, Sang-Seok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.323-329
    • /
    • 2012
  • A thermal management system of a proton exchange membrane fuel cell is taken charge of controlling the temperature of fuel cell stack by rejection of electrochemically reacted heat. Two major components of thermal management system are heat exchanger and pump which determines required amount of heat. Since the performance and durability of PEMFC system is sensitive to the operating temperature and temperature distribution inside the stack, it is necessary to control the thermal management system properly under guidance of operating strategy. The control study of the thermal management system is able to be boosted up with hardware in the loop simulation which directly connects the plant simulation with real hardware components. In this study, the plant simulation of fuel cell stack has been developed and the simulation model is connected with virtual data acquisition system. And HIL simulator has been developed to control the coolant supply system for the study of PEMFC thermal management system. The virtual data acquisition system and the HIL simulator are developed under LabVIEWTM Platform and the Simulation interface toolkit integrates the fuel cell plant simulator with the virtual DAQ display and HIL simulator.

Analysis of Insulating Reliability in Epoxy Composites (Epoxy 복합체의 절연 신뢰도 해석)

  • 임중관;천민우;박용필
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.724-728
    • /
    • 2001
  • In this study, the dielectric breakdown of epoxy composites used for transformers was experimented and then its data were simulated by Weibull distribution probability. The dielectric breakdown characteristics origin in epoxy composites were examined and various effects of dielectric breakdown on epoxy composites were also discussed. As a result, first of all, speaking of dielectric breakdown properties, the more hardener increased the stronger breakdown strength at low temperature because of cross-linked density by the virtue of ester radical. And the breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised, the electric field is concentrated, and the acceleration of electron and the growth of electron avalanche are early accomplished. In the case of filled specimens with treating silane, the breakdown strength become much higher since this suggests that silane coupling agent improves interfacial combination and relaxs electric field concentration. Finally, from the analysis of weibull distribution, it was confirmed that as the allowed breakdown probability was given by 0.1%, the applied field value needed to be under 21.5㎹/cm.

  • PDF

Evaluation of Electrical Degradation in Epoxy Composites by DC Dielectric Breakdown Properties (DC 절연파괴 특성을 이용한 Epoxy 복합체의 전기적 열화 평가)

  • 임중관;박용필
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.779-783
    • /
    • 2002
  • The dielectric breakdown of epoxy composites used for transformers was experimented and then its data were simulated by Weibull distribution probability. As a result, first of all, speaking of dielectric breakdown properties, the more hardener increased the stronger breakdown strength at low temperature because of cross-linked density by the virtue of ester radical. And the breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised, the electric field is concentrated, and the acceleration of electron and the growth of electron avalanche are early accomplished. In the case of filled specimens with treating silane, the breakdown strength become much higher since this suggests that silane coupling agent improves interfacial combination and relaxs electric field concentration. Finally, from the analysis of weibull distribution, it was confirmed that as the allowed breakdown probability was given by 0.1%, the applied field value needed to be under 21.5MVcm.

  • PDF

Blistering Induced Degradation of Thermal Stability Al2O3 Passivation Layer in Crystal Si Solar Cells

  • Li, Meng;Shin, Hong-Sik;Jeong, Kwang-Seok;Oh, Sung-Kwen;Lee, Horyeong;Han, Kyumin;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.53-60
    • /
    • 2014
  • Different kinds of post-deposition annealing (PDA) by a rapid thermal process (RTP) are used to enhance the field-effect passivation of $Al_2O_3$ film in crystal Si solar cells. To characterize the effects of PDA on $Al_2O_3$ and the interface, metal-insulator semiconductor (MIS) devices were fabricated. The effects of PDA were characterized as functions of RTP temperature from $400{\sim}700^{\circ}C$ and RTP time from 30~120 s. A high temperature PDA can retard the passivation of thin $Al_2O_3$ film in c-Si solar cells. PDA by RTP at $400^{\circ}C$ results in better passivation than a PDA at $400^{\circ}C$ in forming gas ($H_2$ 4% in $N_2$) for 30 minutes. A high thermal budget causes blistering on $Al_2O_3$ film, which degrades its thermal stability and effective lifetime. It is related to the film structure, deposition temperature, thickness of the film, and annealing temperature. RTP shows the possibility of being applied to the PDA of $Al_2O_3$ film. Optimal PDA conditions should be studied for specific $Al_2O_3$ films, considering blistering.

A Novel Atomic Layer Deposited Al2O3 Film with Diluted NH4OH for High-Efficient c-Si Solar Cell

  • Oh, Sung-Kwen;Shin, Hong-Sik;Jeong, Kwang-Seok;Li, Meng;Lee, Horyeong;Han, Kyumin;Lee, Yongwoo;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.40-47
    • /
    • 2014
  • In this paper, $Al_2O_3$ film deposited by thermal atomic layer deposition (ALD) with diluted $NH_4OH$ instead of $H_2O$ was suggested for passivation layer and anti-reflection (AR) coating of the p-type crystalline Si (c-Si) solar cell application. It was confirmed that the deposition rate and refractive index of $Al_2O_3$ film was proportional to the $NH_4OH$ concentration. $Al_2O_3$ film deposited with 5 % $NH_4OH$ has the greatest negative fixed oxide charge density ($Q_f$), which can be explained by aluminum vacancies ($V_{Al}$) or oxygen interstitials ($O_i$) under O-rich condition. $Al_2O_3$ film deposited with $NH_4OH$ 5 % condition also shows lower interface trap density ($D_{it}$) distribution than those of other conditions. At $NH_4OH$ 5 % condition, moreover, $Al_2O_3$ film shows the highest excess carrier lifetime (${\tau}_{PCD}$) and the lowest surface recombination velocity ($S_{eff}$), which are linked with its passivation properties. The proposed $Al_2O_3$ film deposited with diluted $NH_4OH$ is very promising for passivation layer and AR coating of the p-type c-Si solar cell.

Interfacial Microstructure and Electrical Properties of $Al_2O_3/Si$ Interface of Mono-crystalline Silicon Solar Cells (단결정 실리콘 태양전지에서 후열처리에 따른 $Al_2O_3/Si$ 계면조직의 특성 변화)

  • Paek, Sin Hye;Kim, In Seob;Cheon, Joo Yong;Chun, Hui Gon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.41-46
    • /
    • 2013
  • Efficient and inexpensive solar cells are necessary for photo-voltaic to be widely adopted for mainstream electricity generation. For this to occur, the recombination losses of charge carriers (i.e. electrons or holes) must be minimized using a surface passivation technique suitable for manufacturing. Recently it has been shown that aluminum oxide thin films are negatively charged dielectrics that provide excellent surface passivation of silicon solar cells to attract positive-charged holes. Especially aluminum oxide thin film is a quite suitable passivation on the rear side of p-type silicon solar cells. This paper, it demonstrate the interfacial microstructure and electrical properties of mono-crystalline silicon surface passivated by $Al_2O_3$ films during firing process as applied for screen-printed solar cells. The first task is a comparison of the interfacial microstructure and chemical bonds of PECVD $Al_2O_3$ and of PEALD $Al_2O_3$ films for the surface passivation of silicon. The second is to study electrical properties of double-stacked layers of PEALD $Al_2O_3$/PECVD SiN films after firing process in the temperature range of $650{\sim}950^{\circ}C$.

Preparation of Spherical Li4Ti5O12 and the Effect of Y and Nb Doping on the Electrochemical Properties as Anode Material for Lithium Secondary Batteries (리튬이온이차전지용 구형 Li4Ti5O12 음극 합성 및 Y와 Nb 도핑에 따른 전기화학적 특성)

  • Ji, Mi-Jung;Kwon, Yong-Jin;Kim, Eun-Kyung;Park, Tae-Jin;Jung, Sung-Hun;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.659-662
    • /
    • 2012
  • Yttrium (Y) and niobium (Nb) doped spherical $Li_4Ti_5O_{12}$ were synthesized to improve the energy density and electrochemical properties of anode material. The synthesized crystal was $Li_4Ti_5O_{12}$, the particle size was less than $1{\mu}m$ and the morphology was spherical and well dispersed. The Y and Nb optimal doping amounts were 1 mol% and 0.5 mol%, respectively. The initial capacity of the dopant discharge and charge capacity were respectively 149mAh/g and 143 mAh/g and were significantly improved compared to the undoped condition at 129 mAh/g. Also, the capacity retention of 0.2 C/5 C was 74% for each was improved to 94% and 89%. It was consequently found that Y and Nb doping into the $Li_4Ti_5O_{12}$ matrix reduces the polarization and resistance of the solid electrolyte interface (SEI) layer during the electrochemical reaction.