• 제목/요약/키워드: interface capture

검색결과 149건 처리시간 0.023초

Brain-Computer Interface 기반 인간-로봇상호작용 플랫폼 (A Brain-Computer Interface Based Human-Robot Interaction Platform)

  • 윤중선
    • 한국산학기술학회논문지
    • /
    • 제16권11호
    • /
    • pp.7508-7512
    • /
    • 2015
  • 뇌파로 의도를 접속하여 기계를 작동하는 뇌-기기 접속(Brain-Computer Interface, BCI) 기반의 인간-로봇상호작용(Human-Robot Interaction, HRI) 플랫폼을 제안한다. 사람의 뇌파로 의도를 포착하고 포착된 뇌파 신호에서 의도를 추출하거나 연관시키고 추출된 의도로 기기를 작동하게 하는 포착, 처리, 실행을 수행하는 플랫폼의 설계, 운용 및 구현 과정을 소개한다. 제안된 플랫폼의 구현 사례로 처리기에 구현된 상호작용 게임과 처리기를 통한 외부 장치 제어가 기술되었다. BCI 기반 플랫폼의 의도와 감지 사이의 신뢰성을 확보하기 위한 다양한 시도들을 소개한다. 제안된 플랫폼과 구현 사례는 BCI 기반의 새로운 기기 제어 작동 방식의 실현으로 확장될 것으로 기대된다.

충격파에서의 물성치 진동현상에 대한 분석 (Analysis of Oscillatory Behaviors in Shock Waves)

  • 김규홍;김종암;노오현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 추계 학술대회논문집
    • /
    • pp.103-108
    • /
    • 2002
  • The M-AUSMPW+ scheme that can capture shock waves exactly with monotonic characteristics is modifided from AUSMPW+ by analyzing the cause of oscillation in shock regions. Firstly shock-capturing characteristics of general FVS including the AUSM-type schemes are investigated in detail, according to the difference between a cell-interface and a sonic transition position. The cause of oscillation is the improper numerical dissipation that could not represent the real Physics. The M-AUSMPW+ could capture shocks exactly without oscillatory behaviors in considering the sonic transition position and an cell-interface position.

  • PDF

Identification of user's Motion Patterns using Motion Capture System

  • Jung, Kwang Tae;Lee, Jaein
    • 대한인간공학회지
    • /
    • 제33권6호
    • /
    • pp.453-463
    • /
    • 2014
  • Objective:The purpose of this study is to identify motion patterns for cellular phone and propose a method to identify motion patterns using a motion capture system. Background: In a smart device, the introduction of tangible interaction that can provide new experience to user plays an important role for improving user's emotional satisfaction. Firstly, user's motion patterns have to be identified to provide an interaction type using user's gesture or motion. Method: In this study, a method to identify motion patterns using a motion capture system and user's motion patterns for using cellular phone was studied. Twenty-two subjects participated in this study. User's motion patterns were identified through motion analysis. Results: Typical motion patterns for shaking, shaking left and right, shaking up and down, and turning for using cellular phone were identified. Velocity and acceleration for each typical motion pattern were identified, too. Conclusion: A motion capture system could be effectively used to identify user's motion patterns for using cellular phone. Application: Typical motion patterns can be used to develop a tangible user interface for handheld device such as smart phone and a method to identify motion patterns using motion analysis can be applied in motion patterns identification of smart device.

자립형 이족 보행 로봇의 개발 (Development of Autonomous Biped Walking Robot)

  • 김영식;오정민;백창열;우정재;최형식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.805-809
    • /
    • 2003
  • We developed a human-sized BWR(biped walking robot) named KUBIR1 driven by a new actuator based on the ball screw which has high strength and high gear ratio. KUBIR1 was developed to walk autonomously such that it is actuated by small torque motors and is boarded with DC battery and controllers. To utilize the information on the human walking motion and to analyze the walking mode of robot, a motion capture system was developed. The system is composed of the mechanical and electronic devices to obtain the joint angle data. By using the obtained data, a 3-D graphic interface was developed based on the OpenGL tool. Through the graphic interface, the control input of KUBIR1 is performed.

  • PDF

AN IMPLEMENTATION OF EXTERNAL INTERFACE FOR PROVIDING THE KOMPSAT-2 CATALOGUE SERVICE

  • Park, Jae-Hong;Lee, Sun-Gu;Kim, Youn-Soo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.236-239
    • /
    • 2008
  • Korea Aerospace Research Institute (KARI) has been trying for utilizing the polar station in Svalbard, Norway to receive the KOMPSAT-2 images, which are distributed and applied directly for Europe Space Agency (ESA) users. Now, KARI is operating the SpaceCapture-2 system that provides the KOMPSAT-2 catalogue service via the internet, whereas ESA is operating the EOLI-SA tool that provides access to the online ESA catalogues of Earth Observation (EO) products. This paper describes external interface based on service-oriented architecture in order to provide the KOMPSAT-2 catalogue service from the SpaceCapture-2 system to the EOLI-SA tool. As the KOMPSAT-2 catalogue service is available in the EOLI-SA tool through an implementation of external interface, the extend use of KOMPSAT-2 imageries is expected.

  • PDF

모션 캡처 시스템에 대한 고찰: 임상적 활용 및 운동형상학적 변인 측정 중심으로 (A Review of Motion Capture Systems: Focusing on Clinical Applications and Kinematic Variables)

  • 임우택
    • 한국전문물리치료학회지
    • /
    • 제29권2호
    • /
    • pp.87-93
    • /
    • 2022
  • To solve the pathological problems of the musculoskeletal system based on evidence, a sophisticated analysis of human motion is required. Traditional optical motion capture systems with high validity and reliability have been utilized in clinical practice for a long time. However, expensive equipment and professional technicians are required to construct optical motion capture systems, hence they are used at a limited capacity in clinical settings despite their advantages. The development of information technology has overcome the existing limit and paved the way for constructing a motion capture system that can be operated at a low cost. Recently, with the development of computer vision-based technology and optical markerless tracking technology, webcam-based 3D human motion analysis has become possible, in which the intuitive interface increases the user-friendliness to non-specialists. In addition, unlike conventional optical motion capture, with this approach, it is possible to analyze motions of multiple people at simultaneously. In a non-optical motion capture system, an inertial measurement unit is typically used, which is not significantly different from a conventional optical motion capture system in terms of its validity and reliability. With the development of markerless technology and advent of non-optical motion capture systems, it is a great advantage that human motion analysis is no longer limited to laboratories.

Implementation of Human Motion Following Robot through Wireless Communication Interface

  • Choi, Hyoukryeol;Jung, Kwangmok;Ryew, SungMoo;Kim, Hunmo;Jeon, Jaewook;Nam, Jaedo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.36.3-36
    • /
    • 2002
  • $\textbullet$ Motion capture system $\textbullet$ Exoskeleton mechanism $\textbullet$ Kinematics analysis $\textbullet$ Man-machine Interface $\textbullet$ Wireless communication $\textbullet$ Control algorithm

  • PDF

Coupling non-matching finite element discretizations in small-deformation inelasticity: Numerical integration of interface variables

  • Amaireh, Layla K.;Haikal, Ghadir
    • Coupled systems mechanics
    • /
    • 제8권1호
    • /
    • pp.71-93
    • /
    • 2019
  • Finite element simulations of solid mechanics problems often involve the use of Non-Confirming Meshes (NCM) to increase accuracy in capturing nonlinear behavior, including damage and plasticity, in part of a solid domain without an undue increase in computational costs. In the presence of material nonlinearity and plasticity, higher-order variables are often needed to capture nonlinear behavior and material history on non-conforming interfaces. The most popular formulations for coupling non-conforming meshes are dual methods that involve the interpolation of a traction field on the interface. These methods are subject to the Ladyzhenskaya-Babuska-Brezzi (LBB) stability condition, and are therefore limited in their implementation with the higher-order elements needed to capture nonlinear material behavior. Alternatively, the enriched discontinuous Galerkin approach (EDGA) (Haikal and Hjelmstad 2010) is a primal method that provides higher order kinematic fields on the interface, and in which interface tractions are computed from local finite element estimates, therefore facilitating its implementation with nonlinear material models. The inclusion of higher-order interface variables, however, presents the issue of preserving material history at integration points when a increase in integration order is needed. In this study, the enriched discontinuous Galerkin approach (EDGA) is extended to the case of small-deformation plasticity. An interface-driven Gauss-Kronrod integration rule is proposed to enable adaptive enrichment on the interface while preserving history-dependent material data at existing integration points. The method is implemented using classical J2 plasticity theory as well as the pressure-dependent Drucker-Prager material model. We show that an efficient treatment of interface variables can improve algorithmic performance and provide a consistent approach for coupling non-conforming meshes in inelasticity.

가상 공간에서 에이전트 생성을 위한 실시간 마커프리 모션캡쳐 시스템 (Real-time Marker-free Motion Capture System to Create an Agent in the Virtual Space)

  • 김성은;이란희;박창준;이인호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(3)
    • /
    • pp.199-202
    • /
    • 2002
  • We described a real-time 3D computer vision system called MIMIC(Motion interface f Motion information Capture system) that can capture and save motion of an actor. This system analyzes input images from vision sensors and searches feature information like a head, hands, and feet. Moreover, this estimates intermediated joints as an elbow and hee using feature information and makes 3D human model having 20 joints. This virtual human model mimics the motion of an actor in real-time. Therefore this system can realize the movement of an actor unaffectedly because of making intermediated joint for complete human body contrary to other marker-free motion capture system.

  • PDF

3차원 가상 인체 생성을 위한 실시간 마커프리 모션캡쳐 시스템 (Real-time Marker-free Motion Capture System to Create a 3D Virtual Human Model)

  • 김성은;이란희;박창준;이인호
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 춘계학술발표논문집(하)
    • /
    • pp.1093-1098
    • /
    • 2002
  • 본 연구실에서 개발한 MIMIC(Motion Interface & Motion Information Capture system)은 동작자의 동작을 획득하고, 동작의 의미를 이해할 수 있도록 설계된 시스템이다. 비전 센서로부터 입력된 영상을 분석하여 동작자의 머리와 두 손, 두 발의 정보를 찾는다. 그리고, 이 정보를 기반으로 팔꿈치나 무릎 등의 중간 관절을 추정한 후 20개의 관절을 가지는 3차원 인체 모델을 구성한다. 이 인체 모델은 동작자의 동작을 실시간으로 흉내낸다. 그러므로, 기존의 마커프리 모션캡쳐 시스템과 달리 완벽한 인체를 구성하기 위한 중간 관절까지 생성함으로써 동작자의 동작을 더욱 자연스럽게 구현할 수 있다.

  • PDF