• Title/Summary/Keyword: interface adhesion

Search Result 887, Processing Time 0.029 seconds

Cell response to a newly developed Ti-10Ta-10Nb alloy and its sputtered nanoscale coating

  • Kim, Young-Min;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.1
    • /
    • pp.56-61
    • /
    • 2009
  • STATEMENT OF PROBLEM. The success of titanium implants is due to osseointegration or the direct contact of the implant surface and bone without a fibrous connective tissue interface. PURPOSE. The purpose of this study was to evaluate the osteoblast precursor response to titanium-10 tantalum-10 niobium(Ti-Ta-Nb) alloy and its sputtered coating. MATERIAL AND METHODS. Ti-Ta-Nb coatings were sputtered onto the Ti-Ta-Nb disks. Ti6-Al-4V alloy disks were used as controls. An osteoblast precursor cell line, were used to evaluate the cell responses to the 3 groups. Cell attachment was measured using coulter counter and the cell morphology during attachment period was observed using fluorescent microscopy. Cell culture was performed at 4, 8, 12 and 16 days. RESULTS. The sputtered Ti-Ta-Nb coatings consisted of dense nanoscale grains in the range of 30 to 100 nm with alpha-Ti crystal structure. The Ti-Ta-Nb disks and its sputtered nanoscale coatings exhibited greater hydrophilicity and rougher surfaces compared to the Ti-6Al-4V disks. The sputtered nanoscale Ti-Ta-Nb coatings exhibited significantly greater cell attachment compared to Ti-6Al-4V and Ti-Ta-Nb disks. Nanoscale Ti-Ta-Nb coatings exhibited significantly greater ALP specific activity and total protein production compared to the other 2 groups CONCLUSIONS. It was concluded that nanoscale Ti-Ta-Nb coatings enhance cell adhesion. In addition, Ti-Ta-Nb alloy and its nanoscale coatings enhanced osteoblast differentiation, but did not support osteoblast precursor proliferation compared to Ti-6Al-4V. These results indicate that the new developed Ti-Ta-Nb alloy and its nanoscale Ti-Ta-Nb coatings may be useful as an implant material.

A COMPARISON OF GLASS IONOMER vs RESIN RESTORATION IN MICROLEAKAGE PATTERN OF PRIMARY AND PERMANENT TEETH (유치와 영구치에 수복된 레진과 글라스 아이오노머 수복물의 미세누출 양상에 관한 비교연구)

  • Jun, Kyung-Hyun;Kim, Jong-Soo;Kim, Yong-Kee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.1
    • /
    • pp.47-61
    • /
    • 1998
  • The purpose of this study was to compare the microleakage pattern of glass ionomer with resin restoration in microleakage pattern of primary and permanent teeth. Microscopical observation of interface between tooth structure and restoration was also performed. 80 and 8 sound molar teeth were used for the microleakage test and SEM study respectively. Data were analyzed statistically using ANOVA test and/or t-Test. The results of the present study were as follows: 1. According to the result of microleakage pattern between primary and permanent tooth, primary tooth generally showed more micro leakage than permanent tooth in all groups (p<.05). 2. In the resin-filled groups, occlusal margin was shown to have more microleakage than gingival margin(p<.05). Whereas the glass ionomer-filled groups showed no statistically significant differences between them(p>.05). 3. No statistically significant differences in microleakage could be found between two different resin groups(p>.05), while Fuji II LC group showed less microleakage than Ketac-Fil group(p>.05). 4. The various type hybrid layer was evident under SEM in resin-filled groups both in primary and permanent teeth with generally thicker layer in primary group. Among glass-ionomer group, Fuji II LC group showed more intact adhesion to tooth surface than Ketac-Fil group

  • PDF

Preparation of Aminosiloxane-grafted Poly(imidesiloxane) Copolymer and its Morphology and Adhesive Properties in Film (아미노실록산이 그래프팅된 폴리(이미드실록산) 공중합체 제조와 필름 모폴로지 및 점착 특성 연구)

  • Lee, Ji Mok;Kwon, Eunjin;Lee, Sunyoung;Jung, Hyun Min
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.547-552
    • /
    • 2013
  • Polyimide (PI) containing carboxyl functional group was prepared and reacted with diaminosiloxane during high temperature film casting. The morphology of resulting film was observed by using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX), which revealed that globular 100 nm-sized PI domains and continuous polysiloxane phase were formed. X-ray photoelectron spectroscopy (XPS) study indicated that air-film interface mainly consisted of polysiloxane blocks. Poly(imidesiloxane) thin layer was thermostable until $400^{\circ}C$ and its pressure- sensitive adhesive property was retained up to $300^{\circ}C$. The comparative experiments revealed that grafting between carboxyl groups of polyimide and aminosiloxane was crucial for formation of microdomain structure and pressure-sensitive adhesive property.

A Study on the Fundamental Properties of Cement Mortar Using Polymer Coated Crumb Rubber (폴리머 코팅 폐타이어 분말을 혼입한 시멘트 모르터의 기초적 성질)

  • Song, Hun;Jo, Young-Kug;Soh, Yang-Seob
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.163-172
    • /
    • 1996
  • Recently, the disposal of used vehicle tires is a big social problem because the amount of used vehicle tires has been increased with development of' automobile industry. Many researches have been made on the recycling of used vehicle tires in the various fields of industry as well as construction industry. When the crumb rubber made of vehicle tires is mixed in cement concrete and mortar, it is indicated that the adhesive strength of interface between the crumb rubber and cement hydrates is very low. The purpose of this study is to improve the fundamental properties by increasing of the adhesion strength of styrene-butadiene rubber(SF3R) latex coated crumb rubber in ; cement mortar. SBR-modified mortar using crumb rubber is also tested as the same method. From the test results, the cement mortar using SBR latex coated crumb rubber have a good fundamental properties compared with that using uncoated crumb rubber. The mechanical properties of SBR-modified mortar using crumb rubber with polymer-cement ratios of 10% are also improved.

Investigation into the Thermal Stability of Fluoropolymer Coating for Heat-Resistant Application (내열성 불소수지 코팅막의 열 안정성에 관한 연구)

  • Cho, Hey-Jin;Ryu, Ju-Hwan;Byun, Doo-Jin;Choi, Kil-Yeong
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.96-101
    • /
    • 2005
  • Fluoropolymer of PTFE and PFA etc. is a heat resistance polymeric material that it is known as that maximum continuous use temperature reaches for 260 $^{\circ}C$. It was observed that these polymers had the enough thermal stability so enough that it was kept by thermal aging of 280 $^{\circ}C$/7 weeks too in this study. However, such thermal stability means that bulk material property is kept such as mechanical strength, melting point and initial pyrolysis temperature etc. If these polymers are evaluate by coating property such as surface contact angle, surface morphology, surface scratch, thing that heat resistance is not enough was confirmed in this study. Thermal aging of flouropolymer coating was achieved by gear aging oven that the exchange rate of air was controlled, and the analysis results were indicating serious damage of surface morphology and adhesive strength on metal substrate.

Effect of Plasma Treatment Times on the Adhesion of Cu/Ni Thin Film to Polyimide (폴리이미드와 Cu/Ni층과의 계면결합력에 미치는 플라즈마 처리 시간 효과)

  • Woo, Tae-Gyu;Park, Il-Song;Jung, Kwang-Hee;Jeon, Woo-Yong;Seol, Kyeong-Won
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.657-663
    • /
    • 2011
  • This study represents the results of the peel strength and surface morphology according to the preprocessing times of polyimide (PI) in a Cu/Ni/PI structure flexible copper clad laminate production process based on the polyimide. Field emission scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were used to analyze the surface morphology, crystal structure, and interface binding structure of sputtered Ni, Cu, and electrodeposited copper foil layers. The surface roughness of Ni, Cu deposition layers and the crystal structure of electrodeposited Cu layers were varied according to the preprocessing times. In the RF plasma times that were varied by 100-600 seconds in a preprocessing process, the preprocessing applied by about 300-400 seconds showed a homogeneous surface morphology in the metal layers and that also represented high peel strength for the polyimide. Considering the effect of peel strength on plastic deformation, preprocessing times can reasonably be at about 400 seconds.

Evaluation of Wettability and Interfacial Property of Glass Fiber Reinforced Composite with Different Glass Fiber Conditions via Capillary Effect (Capillary 특성을 활용한 섬유 조건에 따른 유리섬유강화 복합재료의 함침성 및 계면강도 평가)

  • Kim, Jong-Hyun;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.305-310
    • /
    • 2021
  • Mechanical properties of fiber reinforced composites were affected to fiber volume fractions (FVF) and interfacial property by sizing agent conditions. An optimum interface can relieve stress concentration by transferring the mechanical stress from the matrix resin to the reinforcements effectively, and thus can result in the performance of the composites. The interfacial properties and wettability between the epoxy resin and glass fiber (GF) were evaluated for different sizing agent conditions and FVFs. The surface energies of epoxy resin and different sizing agent treated GFs were calculated using dynamic and static contact angle measurements. The work of adhesion, Wa was calculated by using surface energies of epoxy matrix and GFs. The wettability was evaluated via the GF tow capillary test. The interfacial shear strength (IFSS) was evaluated by microdroplet pull-out test. Finally, the optimized GFRP manufacturing conditions could be obtained by using wettability and interfacial property.

Electrochemical Characteristics of Solid Polymer Electrode Fabricated with Low IrO2 Loading for Water Electrolysis

  • Ban, Hee-Jung;Kim, Min Young;Kim, Dahye;Lim, Jinsub;Kim, Tae Won;Jeong, Chaehwan;Kim, Yoong-Ahm;Kim, Ho-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • To maximize the oxygen evolution reaction (OER) in the electrolysis of water, nano-grade $IrO_2$ powder with a low specific surface was prepared as a catalyst for a solid polymer electrolyte (SPE) system, and a membrane electrode assembly (MEA) was prepared with a catalyst loading as low as $2mg\;cm^{-2}$ or less. The $IrO_2$ catalyst was composed of heterogeneous particles with particle sizes ranging from 20 to 70 nm, having a specific surface area of $3.8m^2g^{-1}$. The anode catalyst layer of about $5{\mu}m$ thickness was coated on the membrane (Nafion 117) for the MEA by the decal method. Scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) confirmed strong adhesion at the interface between the membrane and the catalyst electrode. Although the loading of the $IrO_2$ catalyst was as low as $1.1-1.7mg\;cm^{-2}$, the SPE cell delivered a voltage of 1.88-1.93 V at a current density of $1A\;cm^{-2}$ and operating temperature of $80^{\circ}C$. That is, it was observed that the over-potential of the cell for the oxygen evolution reaction (OER) decreased with increasing $IrO_2$ catalyst loading. The electrochemical stability of the MEA was investigated in the electrolysis of water at a current density of $1A\;cm^{-2}$ for a short time. A voltage of ~2.0 V was maintained without any remarkable deterioration of the MEA characteristics.

Development of Amorphous Iron Based Coating Layer using High-velocity Oxygen Fuel (HVOF) Spraying (철계 비정질 분말을 활용한 초고속 용사 코팅층 개발)

  • Kim, Jungjoon;Kim, Song-Yi;Lee, Jong-Jae;Lee, Seok-Jae;Lim, Hyunkyu;Lee, Min-Ha;Kim, Hwi-Jun;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.483-490
    • /
    • 2021
  • A new Fe-Cr-Mo-B-C amorphous alloy is designed, which offers high mechanical strength, corrosion resistance as well as high glass-forming ability and its gas-atomized amorphous powder is deposited on an ASTM A213-T91 steel substrate using the high-velocity oxygen fuel (HVOF) process. The hybrid coating layer, consisting of nanocrystalline and amorphous phases, exhibits strong bonding features with the substrate, without revealing significant pore formation. By the coating process, it is possible to obtain a dense structure in which pores are hardly observed not only inside the coating layer but also at the interface between the coating layer and the substrate. The coating layer exhibits good adhesive strength as well as good wear resistance, making it suitable for coating layers for biomass applications.

Performance Analysis for Proposing Proper Construction Method for Joints of Polyurea Waterproofing Membrane Coating (폴리우레아 도막방수재의 이음부 적정 시공안 제안을 위한 성능 분석)

  • Lee, Jung-Hun;Kim, Byoungil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.77-86
    • /
    • 2024
  • In this study, an evaluation was conducted for a total of 16 conditions to suggest an appropriate construction method for the construction joint of polyurea waterproofing membrane coating. It was analyzed that the longer the construction time difference, the higher the rate of water leaks through joints, and it was confirmed that water leaks could be prevented through primer construction. In addition, since the surface of polyurea exposed outdoors for a long period of time is deteriorated and weakened, it was analyzed that polishing the area increases surface damage and affects the formation of the interface. During maintenance construction, it would be desirable to apply a primer before construction, and it is believed that using the same urea-based material will ensure waterproofing stability.