• Title/Summary/Keyword: intercostal muscles

Search Result 32, Processing Time 0.015 seconds

Effect of Omentum, Pleura, Diaphragm on Tracheal Autograft Survival (자가이식기관의 생존에 필요한 장막, 흉막, 횡격막의 역할 분석)

  • Keum, Dong-Yoon
    • Journal of Chest Surgery
    • /
    • v.38 no.7 s.252
    • /
    • pp.461-467
    • /
    • 2005
  • Pleura, diaphragm, pericardial fat pad, intercostal muscles and omentum can be used to protect and revascularize the bronchial suture line of tracheal transplantation, lung transplantation and pulmonary resection. The purpose of the present study is to compare the influence of the pleura, diaphragm and omentum in survival of isolated tracheal segments in the experimental animals. Material and Method: Sprague-Dawley rats weighing 250- 350g were used. The animals were divided in three groups; the pleura, omentum and diaphragm. Following intraperitoneal anesthesia, endotracheal intubation was performed. Then the trachea was exposed. A three-ring sec- tion of cervical trachea was excised. The resected trachea was implanted at each sites. After 2 weeks, rats were sacrificed. Histopathological examination of the tracheal segments was performed. For comparison of each groups, histopathological viability of resected tracheal segment was scored by three tissue layers; epithelium, submucosa, and cartilage. The results were presented as average score. Result: In histopathological examination, submucosa and cartilage using tracheal segment necrosis scoring system. The pleural group showed well preserved tissue. There was minimal necrosis and inflammation compared with other groups. In the pleural group, tracheal necrosis scores were $2.17\pm0.983$at epithelium, $1.67\pm0.516$ at submucosa and $2.17\pm0.753$ at cartilage. At the omental group, scores were $1.00\pm0.00,\;1.60\pm0.548\;and\;1.80\m0.447$. In the diaphragmatic group, scores were $1.40:\pm0.894,\;2.40\pm0.547\;and\;2.20\pm0.447$. Total necrosis score were $6.00\pm1.789$ in the pleural group, $4.40\pm0.894$ in the omental group and $6.00\pm1.414$ in the diaphragmatic group. Conclusion: There were no significant viability differences in terms of total necrosis score for the viability of resected tracheal segment. But the best result was achieved in the omental group. Therefore, omental wrapping on tracheal graft site will be beneficial for the prevention of graft necrosis.

Polarization-sensitive Optical Coherence Tomography Imaging of Pleural Reaction Caused by Talc in an ex vivo Rabbit Model (생체 외 토끼 모델에서의 탈크에 의해 유발되는 흉막 반응의 편광 민감 광 결맞음 단층촬영 이미징)

  • Park, Jung-Eun;Xin, Zhou;Oak, Chulho;Kim, Sungwon;Lee, Haeyoung;Park, Eun-Kee;Jung, Minjung;Kwon, Daa Young;Tang, Shuo;Ahn, Yeh-Chan
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • The chest wall, an organ directly affected by environmental particles through respiration, consists of ribs, a pleural layer and intercostal muscles. To diagnose early and treat disease in this body part, it is important to visualize the details of the chest wall, but the structure of the pleural layer cannot be seen by chest computed tomography or ultrasound. On the other hand, optical coherence tomography (OCT), with a high spatial resolution, is suited to observe pleural-layer response to talc, one of the fine materials. However, intensity-based OCT is weak in providing information to distinguish the detailed structure of the chest wall, and cannot distinguish the reaction of the pleural layer from the change in the muscle by the talc. Polarization-sensitive OCT (PS-OCT) takes advantage of the fact that specific tissues like muscle, which have optical birefringence, change the backscattered light's polarization state. Moreover, the birefringence of muscle associated with the arrangement of myofilaments indicates the muscle's condition, by measuring retardation change. The PS-OCT image is interpreted from three major perspectives for talc-exposure chest-wall imaging: a thickened pleural layer, a separation between pleural layer and muscle, and a phase-retardation measurement around lesions. In this paper, a rabbit chest wall after talc pleurodesis is investigated by PS-OCT. The PS-OCT images visualize the pleural layer and muscle, respectively, and this system shows different birefringence of normal and damaged lesions. Also, an analyisis based on phase-retardation slope supports results from the PS-OCT image and histology.