• Title/Summary/Keyword: interception

Search Result 342, Processing Time 0.024 seconds

The Effect of Rain Fall Event on $CO_2$ Emission in Pinus koraiensis Plantation in Mt. Taehwa (강우 이벤트가 태화산 잣나무 식재림의 각 발생원별 $CO_2$ 발생량에 미치는 영향)

  • Suh, Sanguk;Park, Sungae;Shim, Kyuyoung;Yang, Byeonggug;Choi, Eunjung;Lee, Jaeseok;Kim, Taekyu
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.389-394
    • /
    • 2014
  • This study was conducted to find out the soil $CO_2$ emission characteristic due to rain fall pattern and intensity changes. Using Automatic Opening and Closing Chambers (AOCCs), we have measured annual soil respiration changes in Pinus koraiensis plantation at Seoul National University experimental forest in Mt. Taehwa. In addition, we have monitored heterotrophic respiration at trenching sites ($4{\times}6m$). Based on the one year data of soil respiration and heterotrophic respiration, we observed that 24% of soil respiration was derived from root respiration. During the rainy season (end of July to September), soil respiration at trenching site and trenching with rainfall interception site were measure during portable soil respiration analyzer (GMP343, Vaisala, Helsinki, Finland). Surprisingly, even after days of continuous heavy rain, soil water content did not exceed 20%. Based on this observation, we suggest that the maximum water holding capacity is about 20%, and relatively lower soil water contents during the dry season affect the vital degree of trees and soil microbe. As for soil respiration under different rain intensity, it was increased about 14.4% under 10 mm precipitation. But the high-intensity rain condition, such as more than 10 mm precipitation, caused the decrease of soil respiration up to 25.5%. Taken together, this study suggests that the pattern of soil respiration can be regulated by not only soil temperature but also due to the rain fall intensity.

Precautionary Action by a Military Aircraft in the Law of Air Warfare: its Rules and Problems (국제항공규범의 전시적용 법리와 쟁점 - 공전규범상 사전예방조치 (Precautionary Measure)의 법리와 쟁점을 중심으로 -)

  • Hwang, Won-Ho;Kim, Hyoung-Ku
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.26 no.2
    • /
    • pp.41-68
    • /
    • 2011
  • This article deals with the current rules of law of air warfare and its surrounding issues on precautionary action by a military aircraft at air-to-air operation in international armed conflict. However there is no separate and independent legal system to regulate warfare in aerospace in the current system of law of war (or law of armed conflict). In other words, law of air warfare does not exist in a form of a separate treaty. Air warfare has been regulated by international customary law and the relevant provisions in different Conventions, including 1949 four Geneva Conventions and two Additional Protocols, which mainly regulate land and naval warfare. And this makes difficult to make clear a legal term or legal tests on an issue concerned with law of air warfare, which concludes from time to time a dispute on interpretation and implementation of law of air warfare between states. Therefore, this article refers various materials (including 1949 Geneva Conventions and Additional Protocols, San Remo Manual, Harvard Manual, and ICAO Manual on Interception of Civilian Aircraft) for the purpose of defining the current and desirable legal test on precautionary action by military aircraft. In addition to the main purpose of this article, this article tried to show a characteristic of developing mechanism of law of air Warfare taking into account interactions between international air law and law of air warfare.

  • PDF

Rainfall Pattern Regulating Surface Erosion and Its Effect on Variation in Sediment Yield in Post-wildfire Area (산불피해지에 있어서 강우패턴에 따른 침식토사량의 변화)

  • Seo, Jung-Il;Chun, Kun-Woo;Kim, Suk-Woo;Kim, Min-Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.4
    • /
    • pp.534-545
    • /
    • 2010
  • To examine 1) rainfall pattern (i.e., type and intensity) regulating surface erosion on hillslopes in postwildfire area and 2) its effect on variation in sediment yield along the gradient of severity wildfire regimes and elapsed years, we surveyed the amount of sediment yield with respect to daily or net-effective rainfall in 9 plots in eastern coastal region, Republic of Korea. Before field investigation, all plots classified into three groups: low-, mixed- and high-severity wildfire regimes (3 plots in each group). We found that, with decreasing wildfire regimes and increasing elapsed years, the rainfall type regulating surface erosion changed from daily rainfall to net-effective rainfall (considering rainfall continuity) and its intensity increased continuously. In general, wildfires can destroy the stabilized forest floors, and thus rainfall interception by vegetation and litter layer should be reduced. Wildfires can also decrease soil pores in forest floors, and thus infiltration rates of soil are reduced. These two processes lead to frequent occurrence of overland flows required to surface erosion, and sediment yields in post-wildfire areas should increase linearly with increasing rainfall events. With the decreasing severity wildfire regimes and the increasing elapsed years, these processes should be stabilized, and therefore their sediment yields also decreased. Our findings on variations in sediment yields caused by the wildfire regimes and the elapsed years suggest understanding of hydrogeomorphic and ecologic diversities in post-wildfire areas, and these should be carefully examined for both watershed management and disaster prevention.

Canopy Structure and Light Interception as Related to Forage Growth and Dry Matter Production in Pure and Mixture Stands. (목초 단, 혼파군락에서의 초형구조와 광이용성 및 건물수량생산성)

  • 이호진;윤진일;이광회;임근발
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.2
    • /
    • pp.272-279
    • /
    • 1983
  • Canopy structure and light interception were investigated as related to forage growth and dry matter production in four swards; pure orchardgrass, pure ladino clover, orchard-ladino mixture, and multi-mixture that was consisted of four grasses and three legumes. In spring, multi-mixture stand had the highest LAI, while ladino clover pure stand had low LAI but the highest leaf volume density(L$_{v}$ ). In fall, both pure orchardgrass and orchard-ladino mixture had higher LAI and L$_{v}$ than others. Orchard pure stand was an electophile canopy with K, light extinction coefficient, of 0.29-0.43, pure ladino clover a planophile canopy with K of 0.72, and both mixtures a plagiophile canopy with K of 0.43-0.58. Dry matter yields had highly significant correlation with LAI in all stands. Optimum LAI for pure orchardgrass was estimated above 6.0 and for pure ladino clover, orchard-ladino mixture and multi-mixture were about 3.8,5.0 and 8.0, respectively. Conclusion was made that multi-mixture and orchard-ladino mixture had better canopy structure to improve light penetration and forage yield than pure stands.

  • PDF

Analysis of Intercepted Flow according to Change of Flow Width in Gutter (도로 흐름폭 변화에 따른 차집유량 분석)

  • Joo, Dong Won;Kim, Jung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.377-386
    • /
    • 2021
  • In dense cities, which are covered by many impermeable areas, rainwater flows quickly along the roads and collects in certain areas. The surface runoff that fails to get intercepted by the roadside rain gutters results in a wider flow of water along the sides, which in turn increases the amount of water on the road and causes traffic congestion as well as accidents due to slippage. Based on these issues, this study was carried out in order to propose an intercepted flow calculation formula. To this end, the maximum longitudinal slopes of arterial roads and expressways were reflected to depict a road condition of 2~10 %, while a general traverse slope of 2 % was selected for the traverse slope on the side. As for the road lane condition, two, three, and four lanes were chosen for the area from the centerline to the sidewalk. As for the experimental flow rate, the rainwater runoffs at the actual design frequency of 5, 10, 20, and 30 years for road conditions were converted into experimental flow rates, and as a result, flow rates ranging from 1.36 l/s to 3.96 l/s were divided into ten flow rates for a hydraulic experiment. Also, an equation taking into consideration the inflow velocity and flow width along the roadsides was proposed. The results of the experiment showed an increase in flow width and a decrease in interception rate. Also, the inflow velocity at a traverse slope of 2 % was measured, while increasing the longitudinal slope. Accordingly, an equation for calculating the flow intercepted by rain gutters at a flow width reflecting the longitudinal slope of the road and rainwater runoff, according to the design frequency, was derived by performing a regression analysis using IBM SPSS Statistics 24. It is deemed that the equation derived in this study will be useful in designing rain gutters for roads.

Analysis of the Discharge Characteristics of Non-point Pollutants from the Interception Facilities according to Rainfall Conditions (강우조건에 따른 차집시설에서의 비점오염물질 유출특성분석)

  • Lin, Zi-Yu;Eun, Beomjin;Heo, Jeong Sook;Choi, I Song;Oh, Jong-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • This study was carried out to understand the water quality characteristics of the initial stormwater runoff and the origin of soluble pollutants according to various rainfall conditions from a non-point source reducing facility. The water sample from this study was collected among 10 collection facilities in the G-drainage area. Specifically, five of the collection points including #1, #5, #8, #9, and #10 were reported with unknown water inflow even during non-rain conditions. The leakage characteristics of non-point pollutants from the collection facilities were then able to identify accordingly. The water quality characteristics of the stormwater runoff from the collection facilities were strongly affected by the amounts of rainfalls. The average concentrations of EC, BOD, TOC, and TN during non-rain were found to be higher than their concentrations during rain; on the other hand, the average concentrations of DO were found to be lower than its concentrations during rain. In addition, the distribution of organic components existing in the effluent of collection facilities were identified based on the dissolved organic matter analysis. In summary, the stormwater runoff was highly affected by pollutants flowing from the surrounding environment, and the amounts of hard-to-decompose humic substances were greatly increased in the collection facilities due to rain.

A Missile Guidance Law Based on Sontag's Formula to Intercept Maneuvering Targets

  • Ryoo, Chang-Kyung;Kim, Yoon-Hwan;Tahk, Min-Jea;Choi, Kee-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.397-409
    • /
    • 2007
  • In this paper, we propose a nonlinear guidance law for missiles against maneuvering targets. First, we derive the equations of motion described in the line-of-sight reference frame and then we define the equilibrium subspace of the nonlinear system to guarantee target interception within a finite time. Using Sontag's formula, we derive a nonlinear guidance law that always delivers the state to the equilibrium subspace. If the speed of the missile is greater than that of the target, the proposed law has global capturability in that, under any initial launch conditions, the missile can intercept the maneuvering target. The proposed law also minimizes the integral cost of the control energy and the weighted square of the state. The performance of the proposed law is compared with the augmented proportional navigation guidance law by means of numerical simulations of various initial conditions and target maneuvers.

A Comparative Analysis of Stormwater Runoff with Regard to Urban Green Infrastructure - A Case Study for Bundang Newtown, SungNam - (도시 녹지기반 특성에 따른 강우 유출수 비교 분석 - 성남시 분당신도시를 사례로 -)

  • Park, Eun-Jin;Kang, Kyu-Yi;Lee, Hyun-Jung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.6
    • /
    • pp.1-10
    • /
    • 2008
  • The study was aimed at analyzing the relationship between the characteristics of urban green infrastructure and stormwater runoff in a small urban watershed composed of 22 drainage basins. The green areas of which soils are not sealed and allow water infiltrate, were examined for different types of green spaces. In a comparative study for drainage basins of which green spaces are 15.5% and 34.4%, respectively, runoffs were not different with the size of green space. It was attributed to that the increase of runoff by greater road area offset the advantage of greater green area. Another comparative measurement of runoff for drainage basins with similar green area size showed that runoff decreased with greater permeable area (school ground area) and smaller road area. The runoff measurements could address that runoff rates are affected not only by green area size but also by the type of green area and other land covers related to permeability and flow into drainage. It implicated that the improvement of urban green infrastructure as a functional unit for water infiltration and interception is important for stormwater runoff management.

Impact Point Prediction of the Ballistic Target Using a Flight Phase Discrimination (비행단계 식별 알고리즘을 이용한 초고속 표적의 탄착점 예측)

  • Jung, JaeKyung;Hwang, DongHwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.234-243
    • /
    • 2015
  • It is required to have the capability to predict the impact point of the ballistic target in order to assign the firing unit with high engagement possibility for the interception in the ballistic target defense systems. In this paper, a novel method is proposed to predict the impact point of the ballistic target using a flight phase discrimination algorithm given the insufficient measurements on the partial trajectory. The flight of a ballistic target is composed of a boost phase and a ballistic phase with different dynamics. The flight phase is discriminated by using the normalized innovation distance between measurements and a priori estimated measurements. The threshold and tolerance in the flight phase discrimination are determined from the probabilistic characteristics of the estimation error. Monte Carlo simulations are performed to verify the proposed method.

Engineering Characteristics of the Light Weight Soil Used Recycled Stylofoam Beads and Disposal Soils (폐스티로폴 입자와 현장 발생토를 활용한 경량혼합토의 공학적 특성)

  • Shin, Bang-Woong;Lee, Jong-Kyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.1 no.1
    • /
    • pp.43-50
    • /
    • 2000
  • This paper presents the engineering property of light weight soil made of soil mixed with recycled stylofoam and stabilizer. Recycled stylofoam beads is able to use by lightweight fill materials because it is light, adiabatic, and effective for vibration interception. Especially, recycled stylofoam beads is easy to supply because stylofoam have been recycle item in 1996. In this study, physical and geotechnical properties of the light weight mixed soil(weathered granite soil mixed with Stylofoam Beads) were analyzed by laboratory experiments to examine its suitability for backfill materials. Laboratory tests were performed to evaluated strength, bearing capacity, weight, permeability, microphotograph analysis with variation of mixing ratio. Based on the results, it is concluded that the use of recycled stylofoam beads is acceptable lightweight fill.

  • PDF