• Title/Summary/Keyword: inter-frequency bias

Search Result 13, Processing Time 0.01 seconds

Error Analysis of Inter-Frequency Bias Estimation in Global Navigation Satellite System Signals (위성항법 신호 이중주파수간 편이 추정오차 분석)

  • Kim, Jeongrae;Noh, Jeong Ho;Lee, Hyung Keun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.3
    • /
    • pp.16-21
    • /
    • 2012
  • Global navigation satellite systems (GNSS) use dual frequency signals to remove ionosphere delay effect. GNSS receivers have their own biases, called inter-frequency bias (IFB) between dual frequencies due to differential signal delays in receiving each frequency codes. The IFB degrades pseudo-range and ionosphere delay accuracies, and they must be accurately estimated. Simultaneous estimation of ionosphere map and IFB is applied in order to analyze the IFB estimation accuracy and variability. GPS network data in Korea is used to compute each receiver's IFB. Accuracy changes due to ionosphere model changes is analyzed and the effect of external GNSS satellite IFB on the receiver IFB is analyzed.

Estimation Accuracy Analysis of GPS Inter-Frequency Biases (GPS 주파수간 편이 추정정확도 분석)

  • Kim, Minwoo;Kim, Jeongrae;Heo, Moonbeom
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.1
    • /
    • pp.19-22
    • /
    • 2010
  • The accuracy and integrity of global navigation satellite systems (GNSS) can be improved by using GNSS augmentation systems. Large ionospheric spatial gradient, during ionosphere storm, is a major threat for using GNSS augmentation systems by increasing the spatial decorrelation between a reference system and users. Ionosphere decorrelation behavior can be analyzed by using dual frequency GPS data. GNSS receivers have their own biases, called inter-frequency bias (IFB) between dual(P1 and P2) frequencies and they must be accurately estimated before computing ionosphere delays. GPS network data in Korea is used to compute each receiver's IFB, and their estimation accuracy and variability are analyzed. IFB estimation methodology to apply for ionosphere gradient analysis is discussed.

  • PDF

Structure and properties of ion beam deposited diamond-like carbon films (이온빔 합성법에 의해 증착된 다이아몬드성 카본 필름의 구조 및 특성)

  • 김성화;이광렬;은광용
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.346-352
    • /
    • 1999
  • Diamond-like carbon (DLC) lims were deposited by using end hall type ion gun. Benzene gas was used for the generation of carbon ions. In order to systematically control the ion energy, we applied to the substrate DC, pulsed DC or 250 kHz medium frequency bias voltage, DLC films of superior mechanical properties of hardness 39$\pm$4 GPa and elastic mudulus 290$\pm$50GPa (2 to 6 times better than those of the films deposited by plasma assisted CVD method) could be obtained. Deposition rate was much higher than when using Kaufman type ion source, which results from higher ion beam current of end hall type ion gun. The mechanical properties and atomic bond structure were independent of the bias voltage type ion gun. The mechanical properties and atomic bond structure were independent of the bias voltage type but intimately related with the magnitude of the bias voltage. With increasing the negative bias voltage, the structure of the films changed to graphitic one resulting in decreased content of three dimensional inter-links. Degradation of the mechanical properties with increasing bias voltage could be thus understood in terms of the content odf three dimensional inter-links.

  • PDF

Frequency Dependency of Multi-layer OLED Current Density-voltage Shift and Its Application to Digitally-driven AMOLED

  • Kim, Hyunjong;Kim, Suhwan;Hong, Yongtaek
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.181-184
    • /
    • 2012
  • We report, for the first time, operation frequency dependence of current density-voltage ($J_{OLED}-V_{OLED}$) shift for multi-layer organic light-emitting diodes (OLEDs). When the OLEDs were electrically stressed for 21 hours with 50% duty voltage pulses at 60, 120, 240, and 360 Hz, the JOLED-VOLED shifts were suppressed by half for 360 Hz operation compared with 60 Hz operation, but with little change in emission efficiencies. This frequency dependent $J_{OLED}-V_{OLED}$ shift is believed to be commonly observed for typical multi-layer OLEDs and can be used to further improve lifetime of digitally-driven active-matrix OLED displays.

High Performance Millimeter-Wave Image Reject Low-Noise Amplifier Using Inter-stage Tunable Resonators

  • Kim, Jihoon;Kwon, Youngwoo
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.510-513
    • /
    • 2014
  • A Q-band pHEMT image-rejection low-noise amplifier (IR-LNA) is presented using inter-stage tunable resonators. The inter-stage L-C resonators can maximize an image rejection by functioning as inter-stage matching circuits at an operating frequency ($F_{OP}$) and short circuits at an image frequency ($F_{IM}$). In addition, it also brings more wideband image rejection than conventional notch filters. Moreover, tunable varactors in L-C resonators not only compensate for the mismatch of an image frequency induced by the process variation or model error but can also change the image frequency according to a required RF frequency. The implemented pHEMT IR-LNA shows 54.3 dB maximum image rejection ratio (IRR). By changing the varactor bias, the image frequency shifts from 27 GHz to 37 GHz with over 40 dB IRR, a 19.1 dB to 17.6 dB peak gain, and 3.2 dB to 4.3 dB noise figure. To the best of the authors' knowledge, it shows the highest IRR and $F_{IM}/F_{OP}$ of the reported millimeter/quasi-millimeter wave IR-LNAs.

A PVT-compensated 2.2 to 3.0 GHz Digitally Controlled Oscillator for All-Digital PLL

  • Kavala, Anil;Bae, Woorham;Kim, Sungwoo;Hong, Gi-Moon;Chi, Hankyu;Kim, Suhwan;Jeong, Deog-Kyoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.484-494
    • /
    • 2014
  • We describe a digitally controlled oscillator (DCO) which compensates the frequency variations for process, voltage, and temperature (PVT) variations with an accuracy of ${\pm}2.6%$ at 2.5 GHz. The DCO includes an 8 phase current-controlled ring oscillator, a digitally controlled current source (DCCS), a process and temperature (PT)-counteracting voltage regulator, and a bias current generator. The DCO operates at a center frequency of 2.5 GHz with a wide tuning range of 2.2 GHz to 3.0 GHz. At 2.8 GHz, the DCO achieves a phase noise of -112 dBc/Hz at 10 MHz offset. When it is implemented in an all-digital phase-locked loop (ADPLL), the ADPLL exhibits an RMS jitter of 8.9 ps and a peak to peak jitter of 77.5 ps. The proposed DCO and ADPLL are fabricated in 65 nm CMOS technology with supply voltages of 2.5 V and 1.0 V, respectively.

A Design of Voltage-Controlled CMOS OTA and Its Application to Tunable Filters (전압-제어 CMOS OTA와 이를 이용한 동조 여파기 설계)

  • 차형우;정원섭
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.8
    • /
    • pp.1260-1264
    • /
    • 1990
  • A voltage controlled CMOS operational transconductance amplifier (OTA), whose transconductance is directly proportional to the DC bias voltage, has been designed for many electronic circuit applications. It consists of a differential pair and three ourrent mirrors. The SPICE simulation shows that the conversion sensitivity of the OTA is 41.817 \ulcornerho/V and the linearity error is less than 0.402% over a bias voltage range from -2. OV to 1. OV. Electrically tunalble filters based on voltage controlled impedances, which are realized with OTA's, also have been designed. The SPICE simulation shows that a second-order bandpass filter, whose center frequency is 23KHz at -1. OV, has the conversion sensitivity 6.6KHz/V and the linearity error less than 0.822% over a voltage range from -2.OV tp 1.OV, Tne OTA has been laid out with the 3\ulcorner n-well CMOS design rule adopted in ISRC (inter-university semiconductor research center). The chip size was about $0.756x0.945mm^2$.

  • PDF

A Surface-micromachined Tunable Microgyroscope (주파수 조정가능한 박막미세가공 마이크로 자이로)

  • Lee, Ki-Bang;Yoon, Jun-Bo;Kang, Myung-Seok;Cho, Young-Ho;Youn, Sung-Kie;Kim, Choong-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1968-1970
    • /
    • 1996
  • We investigate a surface-micromachined polysilicon microgyroscope, whose resonant frequencies are electrostatically-tunable after fabrication. The microgyroscope with two oscillation nudes has been designed so that the resonant frequency in the sensing mode is higher than that in the actuating mode. The microgyroscope has been fabricated by a 4-mask surface-micrormachining process, including the deep RIE of a $6{\mu}m$-thick LPCVD polycrystalline silicon layer. The resonant frequency in the sensing mode has been lowered to that in actuating mode through the adjustment of an inter-plate bias voltage; thereby achieving a frequency matching at 5.8kHz under the bias voltage of 2V in a reduced pressure of 0.1torr. For an input angular rate of $50^{\circ}/sec$, an output signal of 20mV has been measured from the tuned microgyroscope under an AC drive voltage of 2V with a DC bias voltage of 3V.

  • PDF

Climate Change Scenario Generation and Uncertainty Assessment: Multiple variables and potential hydrological impacts

  • Kwon, Hyun-Han;Park, Rae-Gun;Choi, Byung-Kyu;Park, Se-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.268-272
    • /
    • 2010
  • The research presented here represents a collaborative effort with the SFWMD on developing scenarios for future climate for the SFWMD area. The project focuses on developing methodology for simulating precipitation representing both natural quasi-oscillatory modes of variability in these climate variables and also the secular trends projected by the IPCC scenarios that are publicly available. This study specifically provides the results for precipitation modeling. The starting point for the modeling was the work of Tebaldi et al that is considered one of the benchmarks for bias correction and model combination in this context. This model was extended in the framework of a Hierarchical Bayesian Model (HBM) to formally and simultaneously consider biases between the models and observations over the historical period and trends in the observations and models out to the end of the 21st century in line with the different ensemble model simulations from the IPCC scenarios. The low frequency variability is modeled using the previously developed Wavelet Autoregressive Model (WARM), with a correction to preserve the variance associated with the full series from the HBM projections. The assumption here is that there is no useful information in the IPCC models as to the change in the low frequency variability of the regional, seasonal precipitation. This assumption is based on a preliminary analysis of these models historical and future output. Thus, preserving the low frequency structure from the historical series into the future emerges as a pragmatic goal. We find that there are significant biases between the observations and the base case scenarios for precipitation. The biases vary across models, and are shrunk using posterior maximum likelihood to allow some models to depart from the central tendency while allowing others to cluster and reduce biases by averaging. The projected changes in the future precipitation are small compared to the bias between model base run and observations and also relative to the inter-annual and decadal variability in the precipitation.

  • PDF

A Design of Dual Frequency Bands Time Synchronization System for Synchronized-Pseudolite Navigation System

  • Seo, Seungwoo;Park, Junpyo;Suk, Jin-Young;Song, Kiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.2
    • /
    • pp.71-81
    • /
    • 2014
  • Time synchronization system using dual frequency bands is designed and the error sources are analyzed for alternative synchronized-pseudolite navigation system (S-PNS) which aims at military application. To resolve near/far problem, dual frequency band operation is proposed instead of pulsing transmission which degrades level of reception. In dual frequency operation H/W delay should be considered to eliminate errors caused by inter-frequency bias (IFB) difference between the receivers of the pseudolites and users. When time synchronization is performed across the sea, multipath error is occurred severely since the elevation angle between pseudolites is low so total reflection can be happened. To investigate the difference of multipath effects according to location, pseudolites are set up coastal area and land area and performances are compared. The error source related with tropospheric delay is becoming dominant source as the coverage of the PNS is broadening. The tropospheric delay is measured by master pseudolite receiver directly using own pseudorange and slave pseudorange. Flight test is performed near coastal area using S-PNS equipped with developed time synchronization system and test results are also presented.