• Title/Summary/Keyword: intensity of rainfall

Search Result 749, Processing Time 0.034 seconds

A Study on Annual Carbon Emission Characteristic Changes Affected by Rainfall (강우에 의한 토양호흡 배출 특성이 연간 토양호흡 배출량에 미치는 영향 연구)

  • Kong, Hak Yang;Park, Sung Ae;Shim, Kyu Young;Kim, Tae Kyu;Lee, Jae Seok;Suh, Sang Uk
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.397-405
    • /
    • 2016
  • For better understand of the soil respiration characteristic in ecosystem, it is necessary to accurately determine the daily, monthly and seasonal $CO_2$ flux related to various environmental factors. In general, soil respiration is being measured on a sunny day. But soil respiration is known to be affected by soil temperature and soil moisture content. In case of forestry, changes in soil moisture content are entirely dependent on rainfall. If we calculated the monthly soil respiration measured based on sunny days data only, it could be a factor that loses credibility soil respiration. On this study, we measured soil respiration on Pinus koraiensis plantation at Mt. Taehwa of Gwangju, Gyeonggi-do on sunny and rainy days in 2012, using Automatic Open-Closed Chamber system (AOCC) and portable $CO_2$ analyzer (GMP343). Then we computed the regression equations using sunny days data, precipitation less than 10 mm data, and precipitation over 10 mm data. At first, there were no significant differences in observed data and computed data. But less than 10 mm precipitation, computed data was 26.5% lower than observed data. Precipitation over 10 mm, on the other hand, the former was 29.3% higher than the latter. In each case, it showed significant differences between observed and computed data (p<0.05). So if we computed regression equation using soil respiration measured sunny days only, about 30% of annual soil respiration could be overestimated. Through further study, we suggest the subdivision and computation of regression equation on the basis of the rainfall intensity.

Development and Effects Analysis of The Decentralized Rainwater Management System by Field Application

  • Han, Young Hae;Lee, Tae Goo
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.15-21
    • /
    • 2014
  • In this study, we developed a modular rainwater infiltration system that can be applied for general purposes in urban areas to prepare for localized heavy rain caused by climatic change. This study also analyzed the system's effects on reducing runoff. An analysis of the system's effects on reducing runoff based on rainfall data and monitoring data obtained between September 2012 and December 2013 after the system was installed showed that approximately 20~22% of the runoff overflowed from the infiltration facility. Also, an analysis of the runoff that occurred during the monsoon season showed that 25% of the runoff overflowed through the storm sewer system of the urban area. These results show that the rainwater overflows after infiltrating the detention facility installed in the area during high-intensity rainfall of 100mm or higher or when precipitation is 100mm for 3~4 days without the prior rainfall. According to precipitation forecasts, torrential rainfall is becoming increasingly prevalent in Korea which is increasing the risk of floods. Therefore, the standards for storm sewer systems should be raised when planning and redeveloping urban areas, and not only should centralized facilities including sewer systems and rainwater pump facilities be increased, but a comprehensive plan should also be established for the water cycle of urban areas. This study indicates that decentralized rainwater management can be effective in an urban area and also indicates that the extended application of rainwater infiltration systems can offer eco-friendly urban development.

Analysis of Flow-Weighted Mean Concentration(FWMC) Characteristics from Rural Watersheds (농업 및 산림유역의 강우유출수 유량가중평균농도 분석)

  • Shin, Min-Hwan;Shin, Yong-Chul;Heo, Sung-Gu;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.3-9
    • /
    • 2007
  • Stream flow and water quality were measured and analyzed with respect to flow-weighted mean concentrations (FWMCs) of 21 rainfall events from a forested watershed (Forest Research Watershed: FRW) and two mixed watersheds of agriculture and forest (YuPo-Ri Watershed: YPW and WolGog-ri Watershed: WGW) located in the middle of the North Han River basin. The monitoring of each watershed was one year and conducted between 2004 and 2006. YPW showed more intensive agricultural practices than WGW where traditional practices were common. The average of the 21 FWMCs were in the order of YPF>WGW>FRW and were significantly different from each other at the level of 0.05. It was shown that the land use with intensive agricultural practices produced and discharged more NPS pollutants than that with traditional practices and forest. Specially, SS concentrations from the mixed watersheds were significantly higher than those from FRW. Influencing factors on runoff were analyzed rainfall and watershed area. And rainfall intensity was greater impact on runoff than daily rainfall. Measured water quality indices were shown positive correlations among them in general. However, no significant correlation was shown between COD and nutrients(T-N and T-P).

Experimental Study on Rainfall Runoff Reduction Effects by Permeable Polymer Block Pavement (투수성 폴리머 블록 포장에 의한 우수 유출 저감 효과에 관한 실험적 연구)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.157-166
    • /
    • 2012
  • Most of the roads are paved with impermeable materials such as asphalt concrete and cement concrete, and in the event of heavy rainfall, rainwater directly flows into river through a drainage hole on the pavement surface. This large quantity of rainwater directly spilled into the river frequently leads to the flooding of urban streams, damaging lowlands and the lower reaches of a river. In recent years there has been a great deal of ongoing research concerning water permeability and drainage in pavements. Accordingly, in this research, a porous polymer concrete was developed for permeable pavement by using unsaturated polyester resin as a binder, recycled aggregate as coarse aggregate, fly ash and blast furnace slag as filler, and its physical and mechanical properties were investigated. Also, 3 types of permeable polymer block by optimum mix design were developed and rainfall runoff reduction effects by permeability pavement using permeable polymer block were analyzed based on hydraulic experimental model. The infiltration volume, infiltration ratio, runoff initial time and runoff volume in permeability pavement with permeable polymer block of $300{\times}300{\times}80$ mm were evaluated for 50, 100 and 200mm/hr rainfall intensity.

Mesoscale Features and Forecasting Guidance of Heavy Rain Types over the Korean Peninsula (한반도 호우유형의 중규모 특성 및 예보 가이던스)

  • Kim, Sunyoung;Song, Hwan-Jin;Lee, Hyesook
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.463-480
    • /
    • 2019
  • This study classified heavy rain types from K-means clustering for the hourly relationship between rainfall intensity and cloud top height over the Korean peninsula, and then examined their statistical characteristics for the period of June~August 2013~2018. Total rainfall amount of warm-type events was 2.65 times larger than that of the cold-type, whereas the lightning frequency divided by total rainfall for the warm-type was only 46% of the cold-type. Typical cold-type cases exhibited high cloud top height around 16 km, large reflectivity in the upper layer, and frequent lightning flashes under convectively unstable condition. Phenomenally, the cold-type cases corresponded to cloud cluster or multi-cell thunderstorms. However, two warm-type cases related to Changma and typhoon were characterized by heavy rainfall due to long duration, relatively low cloud top height and upper-level reflectivity, and the absence of lightning under the convectively neutral and extremely humid conditions. This study further confirmed that the forecast skill of rainfall could be improved by applying correction factor with the overestimation for cold-type and underestimation for warm-type cases in the Local Data Assimilation and Prediction System (LDAPS) operational model (e.g., BIAS score was improved by 5%).

Urban Watershed Runoff Analysis Using Urban Runoff Models (도시유출 모형을 이용한 도시화 유역의 유출 해석)

  • Jeong, Dong-Guk;Lee, Beom-Hui
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.1
    • /
    • pp.75-85
    • /
    • 2003
  • Urban rainfall-runoff procedures are more complex than the agricultural procedures due to the spreading and development of town. And the applications of theses models are more difficult due to the change of real basins. In this study, I applied SWMM and Expert System to get runoff characteristics of an urbanized basin. Noen in Daejeon is selected as a study basin. Real basin data of facilities, rainfall, runoff, and various rainfall intensity equations are used. An Expert System is used to get the parameters of this model. These results can be applied to analyze the reaction tendencies of the urban basin with the time distributions of design rainfall and the urbanization.

End Stress Analysis of Overlaid Concrete Structures Subjected to Thermally Transient Condition by Rainfall (강우에 따른 콘크리트 덧씌우기 보수체의 단부 온도응력 해석)

  • 윤우헌
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.145-151
    • /
    • 1998
  • The vertical tensile stress, ${\sigma}_y$, in the contact zone between the overlay (mortar layer) and substratum (base concrete) can be the main cause of the failure phenomenon of overlaid concrete structures. The development of tensile stress, ${\sigma}_y$, due to external rainy condition was analytically investigated using finite element method. Rainfall intensity $(n_R\;=\;1/a,\;t_R\;=\;10min,\;60min)$, thickness of overlay (do=1,2,4,10 cm) and overlay material (CM,ECM,EM) were the main variables in the analyses. An equation was suggested with which the development of vertical tensile stress, ${\sigma}_y$, in the rainy condition could be determined. Using this equation, it is possible to select proper material properties and overlay thicknesses to prevent failure in the contact zone due to thermally transient condition caused by rainfall.

Estimation of R factor using hourly rainfall data

  • Risal, Avay;Kum, Donghyuk;Han, Jeongho;Lee, Dongjun;Lim, Kyoungjae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.260-260
    • /
    • 2016
  • Soil erosion is a very serious problem from agricultural as well as environmental point of view. Various computer models have been used to estimate soil erosion and assess erosion control practice. Universal Soil loss equation (USLE) is a popular model which has been used in many countries around the world. Erosivity (USLE R-factor) is one of the USLE input parameters to reflect impacts of rainfall in computing soil loss. Value of R factor depends upon Energy (E) and maximum rainfall intensity of specific period ($I30_{max}$) of that rainfall event and thus can be calculated using higher temporal resolution rainfall data such as 10 minute interval. But 10 minute interval rainfall data may not be available in every part of the world. In that case we can use hourly rainfall data to compute this R factor. Maximum 60 minute rainfall ($I60_{max}$) can be used instead of maximum 30 minute rainfall ($I30_{max}$) as suggested by USLE manual. But the value of Average annual R factor computed using hourly rainfall data needs some correction factor so that it can be used in USLE model. The objective of our study are to derive relation between averages annual R factor values using 10 minute interval and hourly rainfall data and to determine correction coefficient for R factor using hourly Rainfall data.75 weather stations of Korea were selected for our study. Ten minute interval rainfall data for these stations were obtained from Korea Meteorological Administration (KMA) and these data were changed to hourly rainfall data. R factor and $I60_{max}$ obtained from hourly rainfall data were compared with R factor and $I30_{max}$ obtained from 10 minute interval data. Linear relation between Average annual R factor obtained from 10 minute interval rainfall and from hourly data was derived with $R^2=0.69$. Correction coefficient was developed for the R factor calculated using hourly rainfall data.. Similarly, the relation was obtained between event wise $I30_{max}$ and $I60_{max}$ with higher $R^2$ value of 0.91. Thus $I30_{max}$ can be estimated from I60max with higher accuracy and thus the hourly rainfall data can be used to determine R factor more precisely by multiplying Energy of each rainfall event with this corrected $I60_{max}$.

  • PDF

Estimation of Runoff Characteristics of Non-point Pollutant Source by Land Cover Characteristics (토지피복 특성에 따른 비점오염원 유출특성 평가)

  • Lee, Jae-Woon;Yi, Youn-Jeong;Kwon, Hun-Gak;Yoon, Jong-Su;Lee, Chun-Sik;Cheon, Se-Uk
    • Journal of Environmental Science International
    • /
    • v.21 no.8
    • /
    • pp.977-988
    • /
    • 2012
  • This study analyzed the characteristics of stormwater runoff by rainfall type in orchard areas and transportation areas for 2 years(2010~2011year). Effluents were monitored to calculate the Event Mean Concentrations(EMCs) and runoff loads of each pollutant. The pollutant EMCs by volume of stormwater runoff showed the ranges of BOD 0.9~13.6 mg/L, COD 13.7~45.2 mg/L, SS 4.1~236.4 mg/L, T-N 2.123~21.111 mg/L, T-P 0.495~2.214 mg/L in the orchard areas, and was calculated as BOD 2.3~22.5mg/L, COD 4.4~91.1 mg/L, SS 4.3~138.3 mg/L, T-N 0.700~13.500 mg/L, T-P 0.082~1.345 mg/L in the transportation areas. The correlation coefficient of determination in the orchard area was investigated in the order of Total Rainfall(0.81) > Total Runoff(0.76) > Rainfall Intensity(0.56) > Rainfall Duration(0.46) > Antecedent Dry Days(0.27). Also, in the case of the transportation area was investigated in the order of Total Rainfall (0.55) > Total Runoff(0.54) > Rainfall Intensity(0.53) > Rainfall Duration(0.24) > Antecedent Dry Days(0.14). As the result, comparing valuables relating to runoff of non-pollutant source between orchard areas and transportation areas, orchard area($R^2{\geq}0.5$ : X3, X4, X5) was investigated to have more influence of diverse independent valuables compared to the transportation area($R^2{\geq}0.5$ : X3, X4) and the difference of discharge influence factor by the land characteristics appeared apparently.

Review of Parameter Estimation Procedure of Freund Bivariate Exponential Distribution (Freund 이변량 지수분포의 매개변수 추정과정 검토)

  • Park, Cheol-Soon;Yoo, Chul-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.2
    • /
    • pp.191-201
    • /
    • 2012
  • This study reviewed the parameter estimation procedure of the Freund bivariate exponential distribution for the decision of the annual maximum rainfall event. The method of moments was reviewed first, whose results were compared with those from the method of maximum likelihood. Both methods were applied to the hourly rainfall data of the Seoul rain gauge station measured from 1961 to 2010 to select the annual maximum rainfall events, which were also compared each other. The results derived are as follows. First, when applying the method of moments for the parameter estimation, it was found necessary to consider the correlation coefficient between the two variables as well as the mean and variance. Second, the method of maximum likelihood was better to reproduce the mean, but the method of moments was better to reproduce the annual variation of the variance. Third, The annual maximum rainfall events derived were very similar in both cases. Among differently selected annual maximum rainfall events, those with the higher rainfall amount were selected by the method of maximum likelihood, but those with the higher rainfall intensity by the method of moments.