• Title/Summary/Keyword: intensity method

Search Result 4,871, Processing Time 0.031 seconds

Structural Intensity Analysis of Local Ship Structures (선체 구조요소의 진동인텐시티 해석)

  • Cho, Dae-Seung;Kim, Sa-Soo;Lee, Dong-Hwan;Choi, Tae-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.881-887
    • /
    • 2000
  • The interest in evaluation of structural intensity arises for practical reasons, because net energy flow distribution offers information of energy transmission path, positions of sources, and sinks of vibration energy. In this paper, structural intensity analysis of local ship structures using finite element method(FEM) is carried out. The purpose of this analysis is to evaluate the relative accuracy according to mesh fineness. The structural intensity of a stiffened plate varying their mesh fineness is analyzed and the results are compared with those obtained by the assumed made method. As results, the proper mesh size in qualitative/quantitative structural intensity analysis of plate structures is proposed. In addition, the propagation phenomenon of vibration energy is investigated for the L-type plate and box-girder structures.

  • PDF

A study on the identification of dynamic characteristics of tennis racket by acoustic intensity method (음향 인텐시터법을 이용한 테니스 라켓의 동특성에 관한 연구)

  • 오재응;이유엽;염성하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.601-610
    • /
    • 1986
  • The acoustic intensity in the very near field of a vibrating surface reveals information about the location of sound sources and sinks. A system model of tennis racket was developed from simultaneous measurement of excitation force, surface vibration and the near field sound pressure. The characteristics of structural dynamics were obtained by standard experimental modal analysis techniques while the sound radiation characteristics were determined by estimating the acoustic intensity. In this paper, the information about vibration behviour was obtained by acoustic intensity method and some, experiments for verification were carried out. Close correlation was found between experimentally determined acoustic intensity and vibration mode patterns of the tennis racket.

Phonetic Realizations of English Word Stress in Utterances (실제 상황에서 발화된 영어 단어 강세의 음성 실현)

  • Kim, He-Kyung;Kim, Soo-Jung
    • Speech Sciences
    • /
    • v.13 no.4
    • /
    • pp.89-105
    • /
    • 2006
  • This study examines the phonetic realizations of English word stress to identify the influence of experiment method on experiment results. Stimuli uttered by native and Korean ESL beginners in authentic conversations are extracted to be shuffled according to their positions in utterances and information structure. Results indicate that the acoustic characteristics of English word stress are realized depending on its position in utterances. The native speakers correlate the stressed syllables in shorter duration with higher pitch and stronger intensity at sentence-final positions unlike the previous experiments and the traditional definition that stressed syllables are uttered in longer duration with higher pitch and stronger intensity; at sentence-medial positions, the native speakers correlate the stressed syllables in longer duration with higher pitch and no regularity in intensity or in shorter duration with lower pitch and intensity depending on their conversational intention. Korean ESL beginners correlate the stressed syllables in shorter duration regardless of positions in sentences with no regularity in pitch and intensity. This study, thus, shows that a different experiment method may result in different results on the phonetic realizations of English word stress.

  • PDF

A new numerical modelling for evaluating the stress intensity factors in 3-D fracture analysis

  • Cao, Zongjie;Liu, Yongyu
    • Structural Engineering and Mechanics
    • /
    • v.43 no.3
    • /
    • pp.321-336
    • /
    • 2012
  • As an improvement on the isoparametric element method, the derivation presented in this paper is close to that done by Wang (1990) for the 2-D finite element. We extend this idea to solve 3-D crack problems in this paper. A new displacement modelling is constructed with local solutions of three-dimensional cracks and a quasi-compatible isoparametric element for three-dimensional fracture mechanics analysis is presented. The stress intensity factors can be solved directly by means of the present method without any post-processing. A new method for calculating the stress intensity factors of three-dimensional cracks with complex geometries and loads is obtained. Numerical examples are given to demonstrate the validity of the present method. The accuracy of the results obtained by the proposed element is demonstrated by solving several crack problems. The results illustrate that this method not only saves much calculating time but also increases the accuracy of solutions. Because this quasi-compatible finite element of 3-D cracks contains any singularities and easily meets the requirement of compatibility, it can be easily implemented and incorporated into existing finite element codes.

Bounary Element Analysis of Thermal Stress Intensity Factors for Cusp Cracks (커스프 균열에 대한 열응력세기 계수의 경계요소해석)

  • 이강용;조윤호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.119-129
    • /
    • 1990
  • In case that the body with a cusp crack is under uniform heat flow, thermal stress intensity factors are calculated by using boundary element method with linearized body force term. The crack surface is under insulated or fixed temperature condition and the types of crack are symmetric lip and airfoil cusps. Numerical values of thermal stress intensity factors for a Griffith crack and cusp cracks in infinite bodies are proved to be in good agreement within .+-.5% when compared with the previous numerical and exact solutions, respectively. The thermal stress intensity factors for symmetric lip and airfoil cusp cracks in finite bodies are calculated about various effective crack lengths, configuration parameters, and heat flow directions. With the same crack surface thermal boundary conditions, heat flow directions and crack lengths, there are no appreciable differences in variations of thermal stress intensity factors between symmetric lip and airfoil cusp cracks. The signs of thermal stress intensity factors for each cusp crack are changed with each crack surface thermal boundary condition.

Numerical Analysis of Stress Field around Crack Tip under Impact Load (충격하중에 의해 크랙 주위에 형성되는 응력장에 관한 수치해석적 연구)

  • Hwang, Gap-Woon;Cho, Kyu-Zong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.450-460
    • /
    • 1996
  • To investigate the effect of stress wave propagation for crack tip, impact responses of two-dimensional plates with oblique cracks are investigated by a numerical method. In the numerical analysis, the finite element method is used in space domain discretization and the Newmark constant acceleration algorithm is used in time integration. According to the numerical results from the impact response analysis. it is found that the stress fields are bisected at the crack surface and the parts of stress intensity are moved along the crack face. The crack tip stress fields are yaried rapidly. The magnitude of crack tip stress fields are converted to dynamic stress intensity factor. Dynamic sress intensity factor appears when the stress wave has reached at the crack tip and the aspect of change of dynamic stress intensity factor is shown to be the same as the part of the flow of stress intensity.

Structural intensity analysis of a large container carrier under harmonic excitations of propulsion system

  • Cho, Dae-Seung;Kim, Kyung-Soo;Kim, Byung-Hwa
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.87-95
    • /
    • 2010
  • The structural intensity analysis, which calculates the magnitude and direction of vibrational energy flow from vibratory velocity and internal force at any point of a structure, can give information on dominant transmission paths, positions of sources and sinks of vibration energy. This paper presents a numerical simulation system for structural intensity analysis and visualization to apply for ship structures based on the finite element method. The system consists of a general purpose finite element analysis program MSC/Nastran, its pre- and post-processors and an in-house program module to calculate structural intensity using the model data and its forced vibration analysis results. Using the system, the structural intensity analysis for a 4,100 TEU container carrier is carried out to visualize structural intensity fields on the global ship structure and to investigate dominant energy flow paths from harmonic excitation sources to superstructure at resonant hull girder and superstructure modes.

Contrast Enhancement Technique by Intensity Surface Stretching (명도 표면 스트레칭에 의한 화질 개선 기법)

  • Kim, Do-Hyeon;Jung, Ho-Young;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2398-2405
    • /
    • 2007
  • This paper proposes a contrast enhancement technique which stretches the intensity surfaces of image to improve the quality of the digital photos. The proposed method enhances the contrast of image by stretching the intensity surface of the original image to the maximum range of the output image in proportion to the distances between the original intensity surface and upper, lower intensity surface, respectively. The upper and lower intensity surfaces are generated from the original intensity surface by gaussian smoothing. In the experiments, digital color images in a variety of illumination conditions were used and the proposed method was compared with other several existed image enhancement algorithms, which are histogram stretching, surface stretching, histogram equalization, gamma correction and retinex. It was proved that the experimental results were more natural visually without deterioration of gradation.

A Study on the Control Characteristics of Line Scan Light Source for Machine Vision Line Scan Camera (머신 비전 라인 스캔 카메라를 위한 라인 스캔 광원의 제어 특성에 관한 연구)

  • Kim, Tae-Hwa;Lee, Cheon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.371-381
    • /
    • 2021
  • A machine vision inspection system consists of a camera, optics, illumination, and image acquisition system. Especially a scanning system has to be made to measure a large inspection area. Therefore, a machine vision line scan camera needs a line scan light source. A line scan light source should have a high light intensity and a uniform intensity distribution. In this paper, an offset calibration and slope calibration methods are introduced to obtain a uniform light intensity profile. Offset calibration method is to remove the deviation of light intensity among channels through adding intensity difference. Slope calibration is to remove variation of light intensity slope according to the control step among channels through multiplying slope difference. We can obtain an improved light intensity profile through applying offset and slope calibration simultaneously. The proposed method can help to obtain clearer image with a high precision in a machine vision inspection system.

Structural Intensity Analysis of Local Ship Structures Using Finite Element Method (유한요소법을 이용한 선체 국부 구조물의 진동인텐시티 해석)

  • Dong-Hwan Lee;Dae-Seung Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.62-73
    • /
    • 2001
  • The interest in evaluation of structural intensity arises for practical reasons, because net energy flow distribution offers information of energy transmission path, positions of sources, and sinks of vibration energy. In this paper, structural intensity analysis of local ship structures using finite element method(FEM) is carried out. The purpose of this analysis is to evaluate the relative accuracy according to mesh fineness. The structural intensity of unstiffened and stiffened plates varying their mesh fineness is analyzed and the results are compared with those obtained by the assumed mode method. As results, the proper mesh size in qualitative/quantitative structural intensity analysis of plate structures is proposed. In addition, the propagation phenomenon of vibration energy is investigated for the thickness-varying flat plate, L-type plate, and box-girder structures.

  • PDF